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Late Miocene onset of the modern Antarctic 
Circumpolar Current
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The Antarctic Circumpolar Current plays a pivotal role in global climate 
through its strong influence on the global overturning circulation, ocean 
heat and CO2 uptake. However, when and how the Antarctic Circumpolar 
Current reached its modern-like characteristics remains disputed. Here 
we present neodymium isotope and sortable silt records from sediment 
cores in the Southwest Pacific and South Indian oceans spanning the past 
31 million years. Our data indicate that a circumpolar current like that of 
today did not exist before the late Miocene cooling. These findings suggest 
that the emergence of a homogeneous and deep-reaching strong Antarctic 
Circumpolar Current was not linked solely to the opening and deepening of 
Southern Ocean Gateways triggering continental-scale Antarctic Ice Sheet 
expansion during the Eocene–Oligocene Transition (∼34 Ma). Instead, we 
find that besides tectonic pre-conditioning, the expansion of the Antarctic 
Ice Sheet and sea ice since the middle Miocene Climate Transition (∼14 Ma) 
played a crucial role. This led to stronger density contrast and intensified 
Southern Westerly Winds across the Southern Ocean, establishing 
a vigorous deep-reaching circumpolar flow and an enhanced global 
overturning circulation, which amplified the late Cenozoic global cooling.

The Antarctic Circumpolar Current (ACC), driven by the interplay 
among Southern Westerly Winds (SWW), buoyancy forcing and bathym-
etry1, is the largest ocean current on Earth. It actively regulates the 
transport of heat, moisture, carbon and nutrients between the Southern 

Ocean and the low-latitude regions, thus substantially influencing 
atmospheric CO2 and global climate1. To assess the future response of 
the ACC to ongoing climate warming and its impacts on Antarctic Ice 
Sheet dynamics, global circulation and climate2, it is critical to unravel 
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By contrast, εNd(t) values at Site 278 in the Southwest Pacific are 
consistently more radiogenic (εNd(t) ≈ –6.0 ± 0.2 to –7.4 ± 0.3) than pub-
lished palaeorecords from Atlantic and Indian sectors of the Southern 
Ocean, as well as the modern-like CDW εNd values16 until the middle 
Miocene (∼15 Ma) (Figs. 2b and 3). This indicates a fundamentally 
different deep ocean circulation pattern in the Pacific sector of the 
Southern Ocean until the middle Miocene, compared with today. Our 
data hence imply the absence of a modern-like efficient deep-water 
exchange between the Indian and the Pacific sectors of the Southern 
Ocean during the Oligocene and early Miocene.

Overall, variations in εNd(t) values at Site 744 are controlled by the 
admixture of Atlantic (more unradiogenic, lower values) and Pacific 
(more radiogenic, higher values) waters into CDW, with potential minor 
influence of Antarctic weathering inputs20. In detail, between the early 
and middle Miocene (∼21–14.5 Ma), Nd isotopes at Site 744 evolve 
towards more unradiogenic values (Fig. 2b). This trend has previously 
been observed in Nd isotope palaeorecords from the Walvis Ridge 
(Sites 1262 and 1264)23 and Agulhas Ridge (Site 1090)24 (Extended Data 
Fig. 6) and been attributed to increased inflow of North Component 
Water (precursor of North Atlantic Deep Water) into CDW, probably 
via a stronger Atlantic meridional overturning circulation between 
the early and middle Miocene23. The fact that absolute Nd isotope 
values at Kerguelen Site 744 are lower than those observed around the 
Agulhas Ridge Site 1090 can probably be attributed to entrainment of 
unradiogenic dissolved Nd from old continental sources in Prydz Bay25.

Between ∼14.5 and 12.0 Ma, εNd(t) values at Site 744 exhibit a shift 
towards more radiogenic values (Fig. 2b), probably reflecting increased 
inflow of Pacific waters to CDW via Drake Passage. This timing coin-
cides with geophysical, geological and geochemical evidence sug-
gesting major tectonic changes in Drake Passage (development of a 
deep oceanic gateway along the southern Scotia Sea Ridge during the 
middle Miocene12 and the final opening of a deep oceanic pathway in 
the central Scotia Sea at ∼12 Ma7). Hence, our new data, in conjunc-
tion with tectonic reconstructions, provide strong evidence for the 
final establishment of a deep eastward oceanic circulation via Drake 
Passage at 12 Ma.

The more radiogenic εNd(t) values at Site 278 in the Southwest Pacific 
between the Oligocene and early Miocene have previously been attrib-
uted to a stronger influence of South Pacific Deep Water (εNd(t) ≈ –6)26 
in the Southern Emerald Basin because of a shallower and weaker ACC 
flow entering the Southwest Pacific through the Tasmanian Gateway10. 
Our new Nd isotope data reveal that this circulation pattern persisted 

the timing and processes that led to the development of the modern-like 
deep-reaching and homogeneous ACC (circumpolar flow extending 
from the surface to the seafloor), a topic that has been debated for 
more than four decades3–10.

One precondition for the inception of the ACC is the deep tec-
tonic opening of two gateways that blocked circumpolar flow in the 
geological past: the Tasmanian Gateway and the Drake Passage (Fig. 1). 
Tectonic deepening of the Tasmanian Gateway has been constrained 
between ∼33.5 and 30.0 million years ago (Ma) (ref. 11), which matches 
recent reconstructions of a deep eastward flow from the South Indian 
Ocean to the South Pacific Ocean at ∼30 Ma, as the Tasmanian Gateway 
aligned with the SWW8. However, estimates for the deep opening of 
Drake Passage are still debated and range from the Oligocene (∼34 Ma) 
to the late Miocene (∼12 Ma) (refs. 5,7,9,12). Furthermore, recent work 
has questioned whether the tectonic opening of gateways alone is suf-
ficient to initiate a deep-reaching and vigorous ACC similar to today’s13. 
Moreover, eddy-resolving ocean model simulations show that even 
enhanced SWW are not able to generate a modern-like ACC when both 
gateways are open, suggesting that buoyancy forcing plays a primary 
control over the ACC transport14,15.

Diagnostic features of the modern ACC
In light of the ambiguous evidence for the inception of the modern-like 
ACC, we present new geological data to constrain two of its diagnostic 
features: (1) a homogeneous neodymium (Nd) isotope signature of 
Circumpolar Deep Waters (CDW) across the Southern Ocean (compila-
tion from ref. 16 and references therein) and (2) a deep-reaching strong 
flow (flow speed > 10 cm s–1) (ref. 17).

Our new records were generated from two well-dated sedi-
ment cores (Methods and Extended Data Figs. 1 and 2) recovered 
at Deep Sea Drilling Project (DSDP) Site 278 located in the Southern 
Emerald Basin (Pacific sector of the Southern Ocean; 56° 33.42′ S, 
160° 04.29′ E, 3,675 m water depth)18 and Ocean Drilling Program 
(ODP) Site 744 located on the Southern Kerguelen Plateau (Indian 
sector of the Southern Ocean; 61° 34.66′ S, 80° 35.43′ E, 2,307 m 
water depth)19 (Fig. 1). Both sites were persistently positioned within 
the main pathway of the ACC since the early Oligocene (31 Ma) and 
cover the depth range of the modern CDW (∼2,500 and 3,500 m, 
respectively)10,20.

Fossil fish debris from Sites 744 and 278 robustly preserved a 
seawater Nd isotope signature10,20 (Supplementary Information and 
Extended Data Figs. 3 and 4), and results can be used to reconstruct 
water-mass homogeneity along the ACC flow path (εNd(t) denotes the 
time-corrected deviation of a measured 143Nd/144Nd ratio from the 
chondritic uniform reservoir in parts per 10,000 (ref. 21); Methods). 
Mean sortable silt (SS ) size (10–63 μm) of terrigenous sediment  
fractions, can be used to reconstruct bottom flow speed22 (Supplemen-
tary Information and Extended Data Fig. 5). Combined, the proxies 
offer a unique and robust approach to determine the initiation of the 
modern-like, deep-reaching and vigorous ACC.

Onset of a homogeneous circumpolar Nd isotope 
fingerprint
At Site 744 (Southern Kerguelen Plateau; Fig. 1), fish debris εNd(t) values 
range from –9.9 ± 0.1 to –7.8 ± 0.2 between the early Miocene (23.5 Ma) 
and the early Pleistocene (1.2 Ma) (Fig. 2b). These values are in good 
agreement with published Nd isotope palaeorecords from the South 
Atlantic and Indian oceans during the same period (εNd(t) = ∼–7 to –10) 
(Fig. 3 and Extended Data Fig. 6), suggesting an efficient exchange of 
deep waters between the Atlantic and the Indian sectors of the Southern 
Ocean since the Oligocene20,23,24. Modern CDW show a similar range in 
Nd isotope compositions (εNd = –8.3 ± 1.5, n = 158; compilation from  
ref. 16 and references therein) (Fig. 2b), implying that Site 744 was 
bathed by a deep water mass resembling modern CDW εNd values 
throughout the study interval.
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until the middle Miocene (∼15 Ma), supported by results from climate 
models showing a limited throughflow of the ACC across the Tasmanian 
Gateway during the Oligocene in response to a more restricted Austral-
ian palaeobathymetry27 and a generally weaker global overturning 
circulation. The latter has been attributed to weaker SWW as a result 
of reduced meridional surface temperature gradients during the early 
to middle Miocene28.

Our εNd(t) values at Site 278 show an increasing influence of unra-
diogenic Nd in the Southwest Pacific Ocean since the early Miocene 
(∼21 Ma) and the convergence with the palaeorecords from the Atlan-
tic/Indian Ocean (Fig. 3) and modern CDW Nd isotope values from the 
middle Miocene ( ∼ 15 Ma) (Fig. 2b). Given the palaeodepth (∼3,500 m) 
and location of Site 278 in the main pathway of the ACC10, close to the 
Subantarctic Front, our Nd isotope record can be explained by either 
(1) an increasing contribution of unradiogenic Nd from Atlantic/Indian 
deep waters into the deep Southwest Pacific via the Tasmanian Gate-
way or (2) a weakening influence of radiogenic Nd from Pacific Ocean 
deep waters. Published Nd isotope data from the Pacific Ocean are 
inconsistent with a weakening of Pacific deep-water export26 (Fig. 3). 
We therefore propose an increasing contribution of Atlantic/Indian 

deep waters, flowing through the Tasmanian Gateway and occupying 
the deep/abyssal Southwest Pacific, as the source of unradiogenic Nd 
since the early Miocene. The trend towards more unradiogenic values 
at Site 278 is consistent with Nd records from the Indian and Atlantic 
sectors of the Southern Ocean supporting further our hypothesis20,23,24. 
The εNd(t) values at Site 278 converge with Nd isotope palaeorecords 
from the Atlantic/Indian Ocean, as well as the modern CDW εNd values16 
from the middle Miocene (∼15 Ma), but consistently only since ∼12 Ma 
(Figs. 2b and 3).

Causes of modern-like deep ACC development
The convergence of our two new εNd(t) records from Sites 744 and 278 
around 12 Ma marks the emergence of a well-mixed CDW of the ACC 
and thus the development of a modern-like continuous deep-water 
connection among all three major oceanic basins of the Southern Ocean 
(Fig. 2b), which is substantially later than previously suggested3,4,6,8,9. 
However, was the ACC also characterized by a vigorous, deep-reaching 
flow similar to that of today from the middle Miocene?

Our new SS  data from Site 278 provide strong evidence that deep 
ACC speed remains relatively low until at least the late Miocene 
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(∼10 Ma) (Fig. 2c). On the basis of the calibration of SS  for the Scotia–
Weddell Sea region22, our data show a mean ACC flow speed of ∼10 cm s–1 
in the Southwest Pacific (Site 278) from the Oligocene to the late Mio-
cene (∼31–10 Ma; Fig. 2d). This value is two times lower than the ACC 
flow in Drake Passage (core PS97/093-2)29, and the mean modern deep 
ACC velocities (∼20 cm s–1) (refs. 29–31) (Fig. 2d). Our data therefore 
suggest that despite the development of a continuous, deep-water 
circumpolar connection across the Southern Ocean since the middle 
Miocene (∼12 Ma), the ACC never resembled that of the present-day 
vigorous deep flow speeds until at least the late Miocene (∼10 Ma). 
Recent geochemical, sedimentological and micropalaeontological 
data across both sides of the Tasmanian Gateway support our findings, 
suggesting the presence of a weak ACC in the Southern Ocean com-
pared with today´s until at least the late Miocene (∼11 Ma)32–36.

By contrast, our reconstruction of SS-derived flow speeds shows 
an ∼50% increase of the deep ACC in the Southwest Pacific (Site 278) 
during the Pleistocene, converging with deep ACC flow speeds in Drake 
Passage (PS97/093-2)29 as well as modern-like vigorous deep-reaching 
ACC values29–31 (Fig. 2c,d). This major increase in deep ACC flow speed 
appears after a hiatus between ∼10 and 3 Ma, which together with a 
prominent seismic unconformity in the Emerald Basin have been 
attributed to erosion associated with a local intensification of the ACC 
in response to the tectonic opening of the deep gap in Macquarie Ridge 
at 53.5° S37. Today, 30% of the total transport of the ACC passes through 
this gap with mean speeds higher than 20 cm s–1 at 3,000 m (ref. 17). 
To test this hypothesis, we used the high-resolution (1/20° grid spac-
ing) Massachusetts Institute of Technology general circulation model 
with an open (modern-day) and closed Macquarie Ridge passage 
(Methods). Our results show the absence of a prominent change in 
surface and bottom current velocities at Site 278 in response to the 
tectonic opening of the gap (Extended Data Fig. 7). In fact, bottom 
current velocities along the eastern flank of the Macquarie Ridge and 
across the location of Site 278 change by less than 10 cm s–1 due to its 
opening. Our modelling results therefore argue against the possibility 
that a regional tectonic event in the Macquarie Ridge could have been 
a major driver of the observed changes in the deep ACC flow velocities 
in the Southwest Pacific.

Instead of tectonic changes in the Southern Ocean gateways  
and Macquarie Ridge region, we propose that climate-driven mecha-
nisms drove the emergence of modern-like strong deep ACC flow. 
Continued sea surface38–40 and deep-water38,41 cooling in the Southern 
Ocean (Fig. 2f), as well as a large expansion of the Antarctic Ice Sheet38,41 
and a more persistent presence of sea ice (Fig. 2a)32,42 since the middle 
Miocene Climatic Transition led to steepening of Equator–pole tem-
perature gradients39,40 and hence a stronger density gradient14,15 and 
intensification of the SWW (Fig. 2e)43,44 across the Southern Ocean. This 
change in buoyancy forcing and wind stress in turn led to substantial 
intensification of the deep ACC flow. Our hypothesis is supported by 
our SS  data (Fig. 2c), which despite their low resolution, appear to 
closely track changes of the SWW as reflected in enhanced precipitation 
and river run-off in Southwest Australia43,44 (Fig. 2e), sea surface tem-
perature cooling trend offshore Tasmania (Fig. 2f)39 and eddy-resolving 
ocean model simulations45. Both processes (wind stress and buoyancy 
forcing) modulated the strength of the ACC, with the buoyancy forcing 
providing the primary control over the ACC transport as shown by 
eddy-resolving ocean models14,15. Although the presence of the late 
Miocene–Late Pliocene hiatus did not allow us to decipher the exact 
timing of inception of strong modern-like ACC deep flow velocities in 
the Southwest Pacific, circum-Antarctic sedimentological data provide 
additional evidence for the onset of a vigorous deep ocean current 
system in the Southern Ocean since the late Miocene as reflected by 
the onset and intensification of sediment drift formation46,47. Regard-
less of the exact timing of the onset of vigorous deep ACC flow, our 
findings provide solid evidence that deep ACC flow did not resemble 
modern-like velocities before the late Miocene (∼10 Ma) and indicate 
that the emergence of the modern-like vigorous deep ACC was a result 
of an enhanced density contrast and intensified SWW across the  
Southern Ocean driven by the increased Antarctic glaciation and  
sea-ice production.

By providing direct proxy-based evidence for the absence of a vig-
orous, deep-reaching ACC before ∼10 Ma, our data challenge long-held 
inferences that the modern ACC development was controlled solely by 
the opening of Southern Ocean gateways during and after the Eocene–
Oligocene Transition (∼34 Ma). Furthermore, our findings demonstrate 
that the development of the ACC did not trigger the Antarctic Ice Sheet 
expansion during the Eocene–Oligocene Transition. Instead, the onset 
of the modern-like, deep-reaching ACC was a result of an enhanced 
density contrast and the intensification of the SWW across the Southern 
Ocean driven by the increased Antarctic glaciation following the mid-
dle Miocene Climatic Optimum. Our results suggest that the develop-
ment of a strong deep-reaching ACC may have played an active role in 
global cooling by enhancing the global overturning circulation and 
subsequent drawdown of atmospheric CO2 that characterized the late 
Cenozoic climate41.

Online content
Any methods, additional references, Nature Portfolio reporting 
summaries, source data, extended data, supplementary informa-
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code availability are available at https://doi.org/10.1038/s41561- 
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Methods
Age model
The age model for DSDP Site 278 cores 31R to 26R is from ref. 10. An 
age–depth model for the DSDP Site 278 cores 25R to 2R (∼329–100 m 
below seafloor) was developed from the revision and integration of 
calcareous nannofossil, marine diatom and radiolarian biostratigra-
phy, calibrated using The Geologic Time Scale 201251. Our updated age 
interpretation for the sediments between cores 25R and 2R spans an 
interval from ∼21.3 to 0.5 Ma (Extended Data Fig. 1). Detailed discus-
sion on the development of the age model is presented in ref. 10. The 
age model for the lower Miocene and Pleistocene intervals of ODP 
Site 744 Hole B was developed from the revision of marine diatom, 
radiolarian biostratigraphy and magnetostratigraphic data calibrated 
using The Geologic Time Scale 201251 (Extended Data Fig. 2). Diatom 
and radiolarian biostratigraphic data were compiled from a variety of 
published sources52,53. The magnetic stratigraphy of ODP Site 744 was 
compiled from refs. 19,54.

Fossil fish debris sample preparation for neodymium isotope 
analyses
Fish teeth and bones (fish debris) were handpicked from the >63 μm 
sediment fractions isolated by wet sieving. A total of 31 samples from 
Site 278 and 91 samples from Site 744 were selected for fish debris 
Nd isotope analyses. All samples were treated with ultraclean 18 MΩ 
water and methanol following ref. 55 to remove debris from surfaces 
and cavities (see also ref. 56). Cleaned fish debris samples were sub-
sequently transferred into pre-cleaned microcentrifuge tubes and 
dissolved overnight in 50 μl of 2 M HCl. Dissolved fish debris samples 
were loaded on Biorad cation exchange resin (200–400 μm mesh) to 
separate the rare earth elements (REEs) from the sample matrix and 
Eichrom Ln-Spec resin (50–100 μm bead size) to separate Nd from 
the other REEs. In addition, 49 dissolved fish debris samples from ODP 
Site 744 (early to late Miocene) were cleaned with the same methodol-
ogy. Cleaned fish debris samples were subsequently transferred into 
pre-cleaned microcentrifuge tubes and dissolved overnight in 50 μl 
of 3 M HNO3. Dissolved fish debris samples were loaded on Tru-spec 
resin to separate the REEs from the sample matrix and Ln-Spec resin 
chromatography to separate Nd from the other REEs.

Bulk sediment sample preparation for neodymium isotope 
analyses
Two samples from Site 278 were selected to determine the detrital 
sediment Nd isotope composition to evaluate the potential contri-
bution of the detrital sediments to the porewaters and/or overlying 
bottom-water signatures. Samples were dried and gently homogenized 
using mortar and pestle. First, 1.5 g dried sample and 70–75 ml 1.5% 
buffered acetic acid solution were used to remove biogenic carbonate 
(carbonate leaching). Exchangeable ions were subsequently removed 
using 10 ml 1 M MgCl2 solution. In a third step, ferromanganese oxides 
and oxyhydroxides were removed using leaching in a weak reductive 
solution of 0.005 M hydroxylamine hydrochloride (NH2OH), 1.5% acetic 
acid and 0.03 M Na2–EDTA for 1 h, followed by a stronger leaching step 
utilizing 0.05 M NH2OH for 17 h. Subsequently, 50 mg of leached and 
water washed detrital sediment was digested on a hotplate using a mix-
ture of 1 ml concentrated HNO3, 0.8 ml HClO4 and 2 ml HF. The detrital 
samples were processed using the same column chromatography as 
the fish debris from Site 278.

Neodymium isotope measurements
Neodymium isotope ratios for fish debris and detrital sediment sam-
ples from Site 278 were determined on a Nu Plasma multicollector 
inductively coupled plasma mass spectrometer (MC-ICP-MS) at Impe-
rial College London, operated in static mode. Instrumental mass bias 
was corrected using the 146Nd/144Nd ratio of 0.7219. A JNdi-1 isotope 
standard was run after every sample, and all reported 143Nd/144Nd 

ratios were corrected to a JNdi 
143Nd/144Nd ratio of 0.512115 (ref. 57) 

using bracketing standards. External reproducibility was monitored 
using JNdi standards, and accuracy was confirmed by measuring 
USGS BCR-2 rock standards with each batch of samples, yielding 
average 143Nd/144Nd ratios of 0.512636 ± 0.000010 (n = 17; 2 s.d.) in 
excellent agreement with the published BCR-2 143Nd/144Nd ratio of 
0.512638 ± 0.000015 (ref. 58).

Neodymium isotope ratios for 42 fish debris samples from Site 
744 were determined using a Thermo Scientific Triton Plus thermal 
ionization mass spectrometer at the Observatoire Midi-Pyrenees. Sam-
ples were dissolved in 200 μl of 0.05 M HNO3 and loaded on degassed 
rhenium filaments. Measured 143Nd/144Nd ratios are an average of 150 
measurements of ion intensities following the static multi-collection 
mode. Instrumental mass bias was corrected using the 146Nd/144Nd ratio 
of 0.7219. During the whole measurement period, 13 Rennes standards 
were measured repetitively to determine the internal reproducibility. 
The Rennes measurements gave a mean 143Nd/144Nd isotope ratio of 
0.511953 ± 0.00004 (2 s.d., n = 13), in agreement with published Rennes 
143Nd/144Nd ratio of 0.511961 ± 0.000013 ref. 59).

Neodymium isotope ratios for 49 fish debris samples from Site 744 
were performed using a Plasma 3 MC-ICP-MS (Nu Instruments–AME-
TEK) at Centres Cientifics I Tecnologics of the Universitat de Barcelona. 
The 143Nd/144Nd instrumental mass bias was corrected using the refer-
ence 146Nd/144Nd ratio of 0.7219. Moreover, a JNdi-1 standard was ana-
lysed before and after each sample, and an additional sample-standard 
bracketing normalization of the mass bias-corrected ratios was carried 
out using the reference 143Nd/144Nd value of 0.512115 ± 0.000007 for this 
standard57. Uncertainties of the εNd values correspond to the external 
reproducibility of the JNdi-1 analysis performed throughout each 
measurement session (2 s.d., n = 22–34). Uncertainties were 0.14 to 0.21 
εNd units. The accuracy of the method has been demonstrated through 
multiple analyses of the AMES II standard (0.511973 + / − 0.000012, 
2 s.d. = 24 ppm, n = 116), and results were not significantly different 
from those previously published24. Procedural blanks were systemati-
cally negligible with the three methods.

REE concentrations
The REE concentration measurements from 39 fish debris samples at 
Site 744 were made on aliquots of the same samples used for Nd iso-
tope analysis, using a Thermo Scientific Element XR high-resolution 
ICP-MS at the Observatoire Midi-Pyrenees. Indium and Rhenium were 
used as internal standards during ICP-MS measurements to monitor 
instrumental drift during the course of the analyses. The instrument 
was calibrated using a synthetic multi-element solution routinely used 
by the Observatoire Midi-Pyrenees ICP-MS service. This calibration 
solution has been analysed with three different dilution factors, at the 
beginning and at the end of the analyses, to calibrate the instrument 
response and correct the drift along the analytical sequence. Oxide 
interferences (BaO+ on Nd+ and Eu+, light REE on intermediate REE 
and intermediate REE on heavy REE) were then corrected. However, 
these interferences were very low since the samples were injected via 
an ARIDUS II desolvating nebulizer system. The precision and accu-
racy of ICP-MS analyses were assessed by measuring the natural river 
water reference materials SLRS 6. All REE data were normalized to 
post-Archaean shale concentrations60.

To correct for the in situ decay of 147Sm to 144Nd within the fish 
debris at Site 278 over time, we used a site-specific average 147Sm/144Nd 
ratio of 0.1365, based on samples of fish debris measured from 
older parts at the same site10. For Site 744, we used the147Sm/144Nd 
ratio for sample that we measured Sm and Nd concentrations and 
a site-specific average 147Sm/144Nd ratio of 0.1333 based on samples 
of fish debris measured from older parts at the same site20. Correc-
tions for the in situ decay of 147Sm to 144Nd amounted to 0.01–0.16 εNd 
units for both sites. Decay-corrected ratios are denoted with (t) in 
all figures and text.
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Grain-size analyses
Grain-size analyses were performed at the Environnements et Paléoen-
vironnements Océaniques et Continentaux (University of Bordeaux). 
Bulk grain size was measured in a total of 44 samples from Site 278: 28 
samples from cores 2R–25R and 16 samples from cores 26R–34R using 
a laser microgranulometer Malvern mastersizer hydro 2000G with 
automatic samples (0.020 to 2,000 μm). To separate the terrigenous 
sediment fraction, we used 1–2 ml HCl 37% (hydrochloric acid) to dis-
solve carbonate and 20 ml H2O2 (hydrogen peroxide) to remove organic 
carbon. Moreover, to remove the biogenic (opaline) silica, samples 
were separated into two groups: (1) sediments with low silica content 
and (2) sediments with high silica content. For the first group, 40 ml 
Na2CO3 (2 M) (sodium carbonate) was used, while 20 ml NaOH (1 M) 
(sodium hydroxide) was used for sediments with high silica content. 
Smear slides were prepared to verify efficient removal of siliceous 
microfossils under a microscope at ×500 magnification.

To reconstruct the current speed, we focused on the 10–63 μm 
terrigenous sediment fraction—the sortable silt range (SS)22. Particles 
smaller than 10 μm are deposited as aggregates due to cohesion and 
thus cannot be used as a proxy for current velocity, whereas the sedi-
ment fraction between 10 and 63 μm has been documented to reflect 
current sorting in most cases22. The mean sortable silt size of the 
10–63 μm terrigenous sediment fraction (SS) was calculated in all 44 
samples at Site 278 after the removal of carbonates, organic matter and 
biogenic silica. Precision of the method was ±3%.

Model simulations
To understand the role of the tectonic opening of the 53.5° S passage 
within the Macquarie Ridge complex on local ocean circulation and ACC 
strengthening, we ran two model simulations, with the only change being 
the ridge bathymetry, using the primitive equation Massachusetts Insti-
tute of Technology general circulation model61. The model simulations 
were limited to a regional domain, extending from 145 to 175° E and 48 
to 60° S. We used open boundary conditions with steady-state, annual 
mean temperature, salinity and velocity fields from the Southern Ocean 
State Estimate62. The circulation was restored to these boundary condi-
tions along a 1° wide sponge along all lateral boundaries. Sea surface 
temperatures and salinities were restored to steady annual mean fields 
with a restoring timescale of ten days. The wind stress was also a steady 
mean field from Southern Ocean State Estimate. The model configura-
tions used a free surface, free-slip boundary conditions, a quadratic bot-
tom drag with a coefficient of 0.002 and a nonlinear equation of state63.

The model configurations used a horizontal resolution of 1/20° and 
200 vertical levels ranging from 4 m at the surface to 40 m at depth. The 
maximum ocean depth is 6,000 m. The modern-day bathymetry was 
taken from the Shuttle Radar Topography Mission, SRTM30_PLUS64,65. 
The model configuration with the ‘open’ passage was the same as used 
by ref. 66. To test how much the 53.5° S passage hampers the ACC flow 
across the ridge, we ran a second model where the bathymetry was 
modified, adjusting the depth of the 53.5° S passage to ∼500 m to be 
aligned with the surrounding ridge depth (‘closed ridge’ configura-
tion). The model was run for 20 years, with the figures showing output 
averaged over the last 10 years.

Data availability
The datasets generated as part of this study are available at PANGAEA 
(https://doi.pangaea.de/10.1594/PANGAEA.937372).
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Extended Data Fig. 1 | Revised age-depth model at Site 278. From left to 
right: core number, core recovery, lithologic log based on initial shipboard 
sedimentological descriptions, depth in meters below sea floor (mbsf). Grey 
vertical stripes show normal polarity zones of the geomagnetic polarity 

timescale51. LAD: Last appearance datum, FAD: First appearance datum. 
Horizontal error bars on biostratigraphic events indicate total age range for the 
given datum. Vertical error bars indicate the depth range for the given datum. 
Datums for cores 34R-26R are from10.
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Extended Data Fig. 2 | Revised age-depth model at Site744 Hole B. From left to 
right: core number, core recovery, local polarity based on inclination values19,54 
and depth in meters below sea floor (mbsf). Grey vertical stripes show normal 
polarity zones of the geomagnetic polarity timescale51. LAD: Last appearance 

datum, FAD: First appearance datum. Horizontal error bars on biostratigraphic 
events indicate total age range for the given datum. Vertical error bars indicate 
the depth range for the given datum.
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Extended Data Fig. 3 | Neodymium isotope data from Site 278. Neodymium isotope composition (εNd(t)) of fish debris (red filled diamonds; n = 31) and bulk sediment 
εNd(t) values (red open diamonds) at Site 278. Error bars represent instrumental uncertainty (2σ).
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Extended Data Fig. 4 | Rare earth element patterns normalized to Post Archean Shale (PAAS) concentrations from fish debris data at Site 744.
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Extended Data Fig. 5 | Down-core grain size data from Site 278. a: Mean sortable silt (SS), b: Site 278 sortable silt (SS) percentage, c: Linear relation between SS  and 
SS percentage, d: uncorrelated IRD ( > 150 μm) with SS .
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Water-mass endmembers and Nd isotope records used 
for this study from the Atlantic, Indian and Pacific Oceans. For site locations 
see Fig. 1. a, Individual Nd isotope records. b, Water-mass endmembers for 
the Atlantic, Indian and Pacific Oceans. The South Atlantic/Indian Ocean deep 
water endmember is based on sites ODP Site 689 (Maud Rise; n = 45)67, Vulcan 
5 (n = 4)68, ODP 1088 (n = 60)69 and ODP 1090 (n = 181)24 (Agulhas Ridge) ODP 
Sites 748 (Kerguelen Plateau; n = 49)20, MW8801 (n = 10)68 and DSDP Site 269 (off 
Adélie Coast; n = 4)36. The Walvis Ridge endmember is based on ODP Sites 1262 
(n = 31) and 1264 (n = 16) (Walvis Ridge23). Crust BM1969 (San Pablo seamount; 

black dots; n = 2370) is located in the northwest Atlantic Ocean. The South Pacific 
deep water endmember is based on ODP Site 1124 (Hikurangi Plateau; n = 36)8 
and ODP Site 1172 (East Tasmanian Plateau; n = 75)8. Other indications for the 
composition of deep waters in the South Pacific/Tasman Sea come from crust 
DR153 (Southeast Pacific; n = 668). The Equatorial Pacific endmember is based 
on crusts from Central Pacific: D11-1 (n = 14)71, VA13-2 (n = 14)71, CD29-271 (n = 14) 
and crust 63KD (Tasman Sea; n = 17)72, D137 (Nova Canton Trough; n = 15)70 and 
carbonate fraction from ODP 806 (Ontong Java Plateau; n = 138)73. Error bars 
represent instrumental uncertainties (2σ).
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g h

Extended Data Fig. 7 | Oceanographic model results with an open (present-
day) and closed (Pliocene) 53.5°S Macquarie Ridge passage (left and right, 
respectively). Upper panels (a, b): vector plots of surface ocean current 
velocities at 100 m water depth (annual mean). Locations of key drill site (DSDP 
278, red diamond), other drill sites (white diamonds), depth profiles (c-f) and 
depth contours (0 m, 1000 m, 2000m; black lines) are shown. Middle panels 
(c-f): depth profiles of annual mean meridional velocities across the ridge 

(red, blue - north-/southward, respectively; black regions - below seafloor; red 
arrow - location of DSDP 278 site). Bottom panels (g,h): annual mean sea surface 
temperatures (at 100 m water depth) with an open (present-day) and closed 
(Pliocene) 53.5°S Macquarie Ridge passage (left and right, respectively). The 
model was run for 20 years, with the figures showing output averaged over the 
last 10 years.
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