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Strong temperature gradients in the ice age 
North Atlantic Ocean revealed by plankton 
biogeography
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Andrew M. Dolman2, Gerrit Lohmann    1,5, André Paul1, Alan Mix7 & 
Michal Kucera    1,3

The cold Last Glacial Maximum, around 20,000 years ago, provides a useful 
test case for evaluating whether climate models can simulate climate states 
distinct from the present. However, because of the indirect and uncertain 
nature of reconstructions of past environmental variables such as sea 
surface temperature, such evaluation remains ambiguous. Instead, here 
we evaluate simulations of Last Glacial Maximum climate by relying on the 
fundamental macroecological principle of decreasing community similarity 
with increasing thermal distance. Our analysis of planktonic foraminifera 
species assemblages from 647 sites reveals that the similarity-decay 
pattern that we obtain when the simulated ice age seawater temperatures 
are confronted with species assemblages from that time differs from the 
modern. This inconsistency between the modern temperature dependence 
of plankton species turnover and the simulations arises because the 
simulations show globally rather uniform cooling for the Last Glacial 
Maximum, whereas the species assemblages indicate stronger cooling in the 
subpolar North Atlantic. The implied steeper thermal gradient in the North 
Atlantic is more consistent with climate model simulations with a reduced 
Atlantic meridional overturning circulation. Our approach demonstrates 
that macroecology can be used to robustly diagnose simulations of past 
climate and highlights the challenge of correctly resolving the spatial 
imprint of global change in climate models.

Earth’s climate was fundamentally different from today during the Last 
Glacial Maximum (LGM; 23,000–19,000 years ago). Atmospheric car-
bon dioxide concentration was much lower, at approximately 185 ppm 
(ref. 1), large ice sheets covered northern North America and Eurasia2 
and ocean circulation was different3. Since anthropogenic climate 

change is projected to shift the climate system towards a different 
state4, it is essential to evaluate the performance of climate models 
under boundary conditions different from today5. Simulation of LGM 
climate has therefore been key to evaluate climate models6–8. Decades 
of data–model comparison have shown that the overall change in global 
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The first global reconstruction of LGM temperatures used transfer 
functions that relate (marine) microfossil assemblage composition 
to (seawater) temperature16. Since then, new geochemical methods 
to reconstruct past temperature have become available, but the 
transfer-function approach still is an important tool in palaeoclima-
tology17,18. However, in theory, species assemblage data could also 
provide a direct way to evaluate climate models independently of 
the reconstructed temperatures. Differences in habitat preferences 
among species result in changes in assemblage composition along 
ecologically relevant environmental gradients19. Thus, the compo-
sitional similarity between assemblages decreases the further apart 
they are from each other in the environmental space. Such similarity 
decay is a fundamental concept in ecology and is observed in many 
different taxa and ecosystems20,21. Like in other marine organisms22, 
temperature has consistently been shown to be the main driver of 
community assembly in planktonic foraminifera on a global scale23,24 
(Fig. 1). Indeed, modern planktonic foraminifera assemblages from 
core-top sediments show a strong monotonic decrease in compo-
sitional similarity with increasing temperature difference (Fig. 2a). 
Contrary to phytoplankton, planktonic foraminifera assemblages 

climate between the LGM and the present is consistent among models 
and palaeoclimate reconstructions, but ambiguities remain in the 
spatial pattern of glacial cooling8–11. This is problematic because the 
spatial temperature pattern is of fundamental importance for climate 
dynamics and also governs the distribution of habitats and ecosystems 
on our planet.

Assessing climate model performance using palaeoclimate recon-
structions is, however, intrinsically challenging because the indirect 
nature of the reconstructions renders it difficult to determine whether 
differences between reconstructions and simulations reflect poor 
model skill or ambiguity in the proxy data12,13. In seawater temperature 
reconstructions, ambiguity arises from uncertainty in the attribution 
of the temperature signal to the depth and season where it originated 
and from the effect of nuisance parameters confounding the otherwise 
dominant effect of temperature on the proxy14,15. Simulations, on the 
other hand, are also associated with ambiguity due to model set-up, 
experimental design and structural uncertainty. Thus, the attribution 
of the differences between reconstructions and simulations to either 
the proxy data or the models is challenging and calls for alternative 
ways to evaluate simulations of past climate.
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Fig. 1 | Planktonic foraminifera biogeography today (based on core-top data) 
and during the LGM. The species assemblages separated into three clusters 
(Methods) show a clear latitudinal pattern due to the influence of temperature on 
planktonic foraminifera species distribution. During the LGM, polar assemblages 
expanded further towards the Equator than today. This change occurred at the 
expense of transitional assemblages, whereas the extent of tropical assemblages 

changed only marginally. This major reorganization of the foraminifera 
communities indicates a steepening meridional ecological gradient that  
was particularly pronounced in the North Atlantic Ocean. White rings around  
the dots in the right panel indicate sites added to previous work11; all data  
sources are provided in Methods. Basemap from Natural Earth (https://www.
naturalearthdata.com/).
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Fig. 2 | Simulated LGM temperature gradients are inconsistent with 
foraminifera biogeography. a, Modern. b, LGM. c, Difference. The core-top data 
(a) indicate that the similarity between assemblages decreases with increasing 
temperature difference. The box-plots indicate the median and interquartile 
range of the similarity; the whiskers extend to 1.5 times this range. They are shown 
at 1 °C bins, and heatmaps in the background show the normalized number 
of site pairs. The modern pattern (a) also appears when the LGM assemblages 

are combined with simulated temperatures (b; ensemble mean). However, the 
simulations also show large temperature differences among some sites even 
though they have highly similar (>0.75) assemblages (b; and highlighted in red 
in c). Notably, these simulated temperature differences appear to lie outside the 
modern limits for assemblages as shown by the black step line in c, which depicts 
the 99th percentile of thermal distance as a function of similarity. All data sources 
are provided in Methods.
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have changed consistently with recurrent glacial–interglacial cycles 
over the late Quaternary period25. Given low dispersal limitations in 
the marine realm compared with on land, this consistent glacial–inter-
glacial change demonstrates that planktonic foraminifera species 
have tracked climate change, that is, that their thermal niches have 
remained stable26,27 rather than (evolutionarily) adapted to the chang-
ing climate. Because of this stability of the thermal niches of planktonic 

foraminifera, the similarity-decay pattern observed in the core-top 
data should also characterize past assemblages. Thus, comparison of 
the similarity-decay pattern obtained using fossil species assemblages 
and simulated temperatures against the reference pattern seen in the 
core-top data offers an alternative way to evaluate climate models that 
is firmly grounded on ecological principles. This approach allows a 
direct comparison of observations and simulations, and hence does 
not rely on space-for-time substitution that is used for the calibration 
of temperature proxies, because it is based on the relationship between 
spatial gradients in species composition and in temperature. Moreover, 
this approach makes full use of the data, as gradients are assessed in all 
directions rather than in a point-by-point comparison. Finally, seasonal 
and vertical habitat tracking by planktonic foraminifera species, which 
complicates climate reconstructions based on their geochemistry28, 
is implicitly accounted for in the method.

In this Article, we use a new dataset of 2,085 LGM planktonic 
foraminifera morphospecies assemblages from 647 unique sites  
(Fig. 1), which represents a 50% increase in coverage compared with 
previous work17 to apply this new macroecological approach. We evalu-
ate near surface seawater temperature patterns from a suite of equi-
librium simulations of LGM carried out using a common protocol with 
state-of-the-art climate models (Methods).

LGM plankton biodiversity patterns
Our new dataset shows clear differences in biogeography between 
modern and LGM planktonic foraminifera (Fig. 1). The largest change 
occurred in the North Atlantic Ocean, where cold-water assemblages 
expanded to the mid-latitudes at the expense of transitional fauna.  
Evidence that the changes in the assemblage composition reflect 
changes in the climate, rather than an adaptation of the ecological 
preferences of the foraminifera species, stems from the good compo-
sitional analogues of the LGM species assemblages for virtually all sites 
(98%; Methods). Adaptation—changes in the thermal niches—would 
result in different glacial species assemblages than seen today. Thus, 
the near absence of poor analogues provides further support for the 
assumption that the similarity-decay pattern observed in the core-top 
assemblages should also characterize those from the LGM. Hence, if the 
models simulate LGM cooling accurately, the similarity-decay pattern 
obtained using simulated temperatures should be indistinguishable 
from the core-top pattern.

To a first degree, the simulated temperatures indeed imply a simi-
larity decay that is similar to that seen in the core-top data, suggesting 
that the global pattern of LGM seawater temperature is reasonably 
well simulated and that planktonic foraminifera changed their dis-
tribution consistent with their modern thermal preferences (Fig. 2). 
However, the LGM similarity-decay pattern obtained using simulated 
temperatures also shows clear differences from the core-top pattern 
(Fig. 2). The discrepancy is largest at high (>0.75) similarities, where in 
many cases the simulated temperature differences exceed the limits 
indicated by modern assemblages (Fig. 2). This pattern is a salient 
feature that characterizes all simulations (Extended Data Fig. 1) and 
is robust against chronological uncertainty (Methods and Extended 
Data Fig. 8). It arises mainly from the similarity among LGM plankton 
assemblages in the North Atlantic and the Nordic Seas (Extended Data 
Fig. 2), where the models maintain the large present-day temperature 
gradient. This anomalous LGM pattern does not reflect model bias, 
since the core-top similarity-decay pattern is reproduced with simu-
lated temperatures from the pre-industrial control runs (Extended Data 
Fig. 3). Notably, the same pattern also appears when LGM similarities 
are plotted against present-day temperature differences (Extended 
Data Fig. 4). Thus, whereas the species assemblages indicate changes 
in the spatial temperature gradients in the LGM, the simulated cooling 
appears globally rather uniform, without marked changes in oceanic 
thermal gradients. The distribution of foraminifera during the LGM 
and the modelled LGM temperatures therefore appear incompatible.
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Fig. 3 | Large model–data differences during the LGM in areas of marked 
species turnover. a–d, The large temporal turnover in planktonic foraminifera 
assemblages in the North Atlantic (a,b) is consistent with a pronounced cooling 
(c,d; background in c shows gridded reconstruction; Methods). e–h, The 
simulations, by contrast, show globally rather uniform cooling (e,f), and appear 
too warm in the North Atlantic (g,h). Simulated temperature and the model–
data difference (e,g; ensemble mean) are shown only at the locations where 
data are available. b,d,f,h, The latitudinal pattern smoothed using a generalized 
additive model, with the 95% confidence interval in grey. Data sources are 
provided in Methods. Basemaps in a,c,e,g from Natural Earth (https://www.
naturalearthdata.com/).
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There is no evidence for the emergence of new species or traits 
or for species extinctions since the LGM29, which is consistent with 
the good compositional analogues between the present and the LGM  
(Methods). Moreover, there is no indication for a widening of the ther-
mal niche of cold-water species that expanded into the mid-latitude 
North Atlantic (Fig. 1). Such adaptation would allow those species to 
migrate into areas with temperatures warmer than their current ther-
mal range but would result in geochemistry-based estimates of LGM 
temperature that are warmer than present. However, such positive 
temperature anomalies are very rare in the most recent compilation of 
LGM seawater temperature proxies30. We therefore rule out that the rela-
tionship between planktonic foraminifera ecology and temperature has 
changed on the studied timescale. The good compositional analogues 
also argue against the existence of presently unobserved oceanic condi-
tions during the LGM. Thus, although there is, in theory, the possibility 
that the relationship between temperature and assemblage composi-
tion arises from collinearity with another environmental variable, it 
is unlikely that this collinearity has changed globally in a systematic 
way. We are therefore left with the observation that the simulated LGM 
temperature change cannot explain fundamental biogeographic pat-
terns in planktonic foraminifera that inhabited the ocean at that time.

Pronounced cooling in the glacial North  
Atlantic Ocean
To further assess the mismatch between the simulations and 
the foraminifera data, we estimate LGM temperatures from the 

assemblages. We use a new approach to resolve ambiguities in the sea-
sonal and vertical origin of the proxy signal that have hindered previous 
comparisons of this kind (Methods). We find that, globally, planktonic 
foraminifera assemblages best reflect annual seawater temperatures 
at 50 m water depth. Averaged across the sites, the resulting recon-
structed temperatures of LGM seawater (Fig. 3) are 2.45 °C (2.33–2.57 °C; 
95% confidence interval) lower than today. The simulations show a 
similar degree of cooling (−1.30 to −2.89 °C, ensemble mean −2.15 °C), 
indicating reasonable agreement on a global scale and testifying to the 
stability of the thermal niches of planktonic foraminifera since the LGM.

However, these averaged values of temperature change hide 
marked differences in the spatial pattern of LGM cooling. The replace-
ment of transitional assemblages with cold-water assemblages in the 
North Atlantic (Figs. 2 and 3) is associated with large-scale cooling. 
Reconstructed subpolar North Atlantic (40°–60° N) temperatures 
are on average 7.3 °C lower than today, leading to drastically different 
meridional temperature gradients (Extended Data Fig. 5). By con-
trast, simulated temperature anomalies are spatially rather uniform, 
and the North Atlantic cooling is markedly weaker in all simulations 
we assessed (Fig. 3). Differences between the simulations and the 
reconstructions reach up to 4.9 °C averaged across the North Atlantic 
(40°–60° N; ensemble mean and up to 8.3 °C for individual models; 
Extended Data Fig. 5), far beyond the uncertainty of the reconstruc-
tions (Methods).

The data thus indicate a marked reorganization of the North 
Atlantic oceanography. The spatial pattern of the temporal species 
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Fig. 4 | Simulations with a colder North Atlantic improve data–model 
agreement. a,b, The LGM similarity-decay patterns based on temperatures 
from the simulation with freshwater input into the North Atlantic (a) are more 
similar to the modern pattern (b) as the number of site pairs with high similarity, 
but large temperature difference between them, is reduced compared with the 
equilibrium simulation (symbols in panel a as in Fig. 2; black lines in b delineate 
the areas with excess temperature differences between sites in the equilibrium 
simulation; Extended Data Fig. 1). c, The difference between the simulated and 

reconstructed temperatures (black) is also reduced compared to the equilibrium 
simulations (red). Percentages in c indicate reduction in difference in the 
subpolar North Atlantic. Lines show the meridional pattern, approximated using 
a generalized additive model smooth, with the 95% confidence interval indicated. 
The results are presented for the different experiments where the freshwater flux 
was applied to either offshore Newfoundland or the subpolar North Atlantic.  
In the extended experiment (Newfoundland ext.), the forcing was applied for 
1,050 years instead of 150. Details and the data sources are provided in Methods.
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turnover and reconstructed temperature change (Fig. 3) resembles the 
fingerprint of the Atlantic meridional overturning circulation (AMOC). 
AMOC changes can create such a characteristic temperature anomaly 
through changes in the location of deep convection and the subpolar 
gyre circulation31. A weaker glacial AMOC, or reduction in its north-
ward extent, is thus a conceivable explanation for the discrepancy. 
To test this hypothesis, we investigated additional simulations with 
one of the models under identical LGM boundary conditions but with 
a weaker AMOC than in the LGM equilibrium simulations (Methods). 
These experiments yield an ocean that is in closer agreement with the 
biogeography of planktonic foraminifera. The additional three simu-
lations are characterized by a colder subpolar North Atlantic, which 
results in similarity-decay patterns that are in closer agreement with 
the core-top pattern (Fig. 4a,b). Differences between reconstructed 
and simulated temperatures are also reduced in the experiments with 
a weaker AMOC, especially in the mid-latitude North Atlantic, where 
the reduction reaches up to approximately 50% (Fig. 4c and Extended 
Data Fig. 6). Thus, the representation of the AMOC in the equilibrium 
simulations appears a likely source of the discrepancy between the 
observations and the simulations.

In these experiments, the reduction in the AMOC was achieved 
by prescribing freshwater flux into the North Atlantic Ocean. In two 
experiments, a 150 yr, 0.2 Sv freshwater forcing was applied to either 
offshore Newfoundland or the central subpolar North Atlantic32, with 
the latter showing a larger reduction in the AMOC and stronger asso-
ciated cooling. To assess the ocean response to forcing that is (more) 
commensurate with the duration of the LGM, we conducted a third 
experiment, in which we applied a stochastically varying freshwater 
flux (0.1 ± 0.05 Sv) near the coast of Newfoundland for 1,050 years, 
simulating persistent, but variable discharge from the Laurentide 
ice sheet. In all experiments, the AMOC shows a marked slowdown 
(coastal: 11.8 Sv; subpolar: 4.3 Sv; coastal long: 8.1 Sv), which appears 
in closer agreement with reconstructions of deep ocean circulation33,34 
compared with the default LGM simulation (18.2 Sv).

Our experiments were designed to mimic freshwater input by 
ice-sheet melting and calving as we hypothesize that the large ice 
sheets during the LGM may have been in a dynamic equilibrium with 
local stochastic mass loss similar to continental ice sheets today35. How-
ever, cooling in the North Atlantic can in simulations also result from 
other processes such as changes in the ice-sheet height or in oceanic 
mixing36,37. Nevertheless, the additional experiments demonstrate 
that a reduced AMOC is a physically plausible mechanism to bring the 
reconstructions and simulations in closer agreement.

By combining insights from different disciplines, we have demon-
strated the power of using ecological principles to evaluate simulations 
of past climate. Because similarity decay with temperature arises from 
the strong temperature dependence of planktonic foraminifera species 
distribution, the method used here can, in principle, also be applied 
to assemblages containing extinct species, providing new ways to 
assess simulations of climate in the distant past. Our analysis indicates 
distinct regional patterns in the LGM temperature change, with the 
largest cooling in the northern North Atlantic, probably related to a 
markedly reduced AMOC. Resolving the changes in the oceanic ther-
mal gradients indicated by planktonic foraminifera assemblages is a 
clear target for simulations, including transient ones, of LGM climate. 
Finally, the spatial heterogeneity of climate change that is robustly 
implied by glacial plankton biogeography underscores the need for 
climate model evaluation beyond globally averaged statistics since 
the spatial heterogeneity of climate change is critical for ecosystems 
and our society.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 

and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41561-023-01328-7.
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Methods
Data
Planktonic foraminifera assemblages. To characterize the modern 
similarity-decay pattern and to calibrate the transfer-function models, 
we used core-top planktonic foraminifera assemblage data from the 
ForCenS compilation38. This compilation contains species relative 
abundances based on counts of at least 300 specimens in the size 
fraction >150 μm. For some sites, the ForCenS compilation contains 
replicate counts, and as in previous work39, we randomly preserved 
a single sample from those sites, resulting in a total of 3,916 samples 
from unique sites from across the global ocean.

For the LGM, we extended the multiproxy approach for the recon-
struction of the glacial ocean surface (MARGO) compilation11 by over 
50% using identical criteria for inclusion to ensure compatibility. We 
compiled data from literature40–78 and added new samples from sedi-
ment cores with age control based on radiocarbon dating79–90. Counts 
from the new samples were performed on aliquots containing at least 
300 specimens in the size fraction >150 μm and following the ForCenS 
taxonomy38. Our new dataset contains 2,085 samples from 647 unique 
sites (Fig. 1). All new samples were assigned a chronological confidence 
level that is consistent with MARGO91. The highest confidence level is 
assigned to age control on the basis of layer counting or on at least 
two radiometric dates within the 19,000–23,000 years bp interval. 
Level 2 indicates age control based on two bracketing radiometric 
age-control points within the 12,000–30,000 years bp interval or by 
correlation to regional records with level 1 chronology. Level 3 chro-
nologies are based on other stratigraphic constraints correlated to 
records that match level 2. Data for which age control could no longer 
be verified, but were previously assigned to the LGM interval, are 
indicated with level 4. The taxonomically harmonized dataset includes 
extensive metadata to facilitate reuse. We encourage future users of 
the data to also acknowledge the original sources of the assemblage 
and age-control data.

Climatology. To assess the similarity decay in the core-top datasets, 
develop the transfer-function model and derive LGM temperature 
anomalies, we used climatology data from a 100-km-radius circle 
around each data point because sediment samples integrate the export 
flux of foraminifera over a similar area92,93. We tested the applicability of 
transfer-function models for different seasons and depths (see the fol-
lowing) and deliberately used the World Ocean Atlas version 199894 to 
reduce the bias of the most recent global warming on our inferences17.

Simulations. We assessed the Palaeoclimate Modelling Intercom-
parison Project (PMIP) phase 3 and phase 4 simulations that were avail-
able at the time of analysis. In total, these were ten simulations from 
eight models that have LGM and pre-industrial runs: NCAR-CCSM495,96, 
CNRM-CM597,98, FGOALS-g299,100, GISS-E2-R101,102, MIROC-ESM103,104, 
MPI-ESM-P105,106, MRI-CGCM3107,108 and AWI-ESM32. These simulations 
were all run using fixed ice sheets and without freshwater hosing in the 
North Atlantic as described in the respective PMIP protocols109,110. From 
these, CCSM4 and GISS have two LGM physics ensemble members each. 
The AWI-ESM has a higher spatial horizontal resolution in the ocean of 
up to 30 km. We used the potential temperature (thetao) fields from 
the ocean models, and all data files have been remapped from their 
generic to a 1° × 1° longitude–latitude grid using bilinear remapping. 
To ensure completeness of the temperature profiles, we created a com-
mon mask of existing data in the LGM and pre-industrial simulations 
at 100 m water depth for each simulation. From this mask of existing 
data, the nearest (in geometrical distance) gridbox containing the site 
was extracted. If the 50 m depth level was not in the model, the value 
was linearly interpolated from the existing depth levels.

We also compared our reconstructions with three experiments 
run using the AWI-ESM using the same LGM boundary conditions but 
with differing freshwater fluxes applied to the North Atlantic. In two 

previously published experiments, a 0.2 Sv freshwater flux was applied 
150 years32. These simulations differ in the location of the freshwater 
input: either between 50° and 70° N off the coast of Newfoundland 
close to the Labrador Sea (called Newfoundland in Fig. 4) or equally 
distributed across the same latitude band in the North Atlantic (called 
subpolar). A global conservation in salinity was enforced at each time 
step by subtracting the global mean changes in net water flux from the 
first ocean layer. In a third, new experiment, we applied a stochastically 
varying freshwater flux (0.1 ± 0.05 Sv) for 1,050 years in the same area 
off Newfoundland as in the other experiments (Newfoundland ext. in 
Fig. 4). For a more realistic representation of the freshwater impacts, 
we switched off the salinity conservation in this simulation and allowed 
the global mean salinity to decrease with the continuous input of fresh-
water. In all experiments, the reduction in the AMOC happens within 
100 years. From the short experiments, we use the temperature fields 
averaged across the years 101–150 of the freshwater perturbation,  
and for the longer experiment we used values averaged over the last 
250 years of the simulation.

Biodiversity patterns
We assessed biodiversity patterns using globally harmonized taxonomy 
in which both subspecies of Globigerinoides ruber and Globorotalia 
menardii and Globorotalia tumida were lumped because they were 
not always separated in our data. We first assessed whether the LGM 
assemblages are compositionally similar to the modern assemblages 
by comparing the dissimilarity (square chord distance) between the 
LGM assemblages and their most similar modern counterparts with a 
baseline established from the core-top assemblages. Following previ-
ous work111, we used the fifth percentile of the pairwise dissimilarities in 
the global core-top dataset as a cut-off for poor analogues. The median 
minimum square chord distance between the LGM and the core-top 
assemblages is 0.09, and at 98% of the sites, the assemblages have a dis-
tance below the poor analogue threshold. This high similarity between 
the core-top and LGM assemblages provides strong evidence against 
changes in the environmental niches of the individual foraminifera spe-
cies as well as against the existence of presently unseen oceanographic 
conditions during the LGM. It also warrants merging of the two datasets 
to visualize changes in planktonic foraminifera biogeography. To this 
end, we performed k-mean cluster analysis to identify changes in the 
distribution of cold-water, transitional and warm-water assemblages 
in the merged dataset (Fig. 1).

To investigate the similarity decay, we used the Bray–Curtis dissim-
ilarity112 because this metric is sensitive to small changes in assemblage 
composition and has been shown to yield robust characterizations of 
beta diversity113. The Bray–Curtis dissimilarity accounts for differences 
in the relative proportions of taxa, and we express similarity as 1 – dis-
similarity. To plot assemblage similarity as a function of environmental 
(temperature) distance (similarity or distance-decay plot), we used 
annual-mean temperature data at 50 m water depth.

We averaged LGM assemblages from the same sites before calcu-
lating the dissimilarities to avoid skewing the decay pattern towards 
higher similarity at zero thermal distance induced by replicate sam-
ples. To determine the LGM distance decay, we derived LGM tempera-
tures from the simulated temperature anomaly to minimize possible 
model-specific bias. For the calculation of temporal turnover (Fig. 3), 
we used only LGM samples that have a core top within a 100 km radius 
to reduce turnover that is due to spatial, rather than temporal, com-
positional change. This cut-off distance is warranted by the fact that 
sediment samples spatially integrate over considerable distances92.

To assess the effect of differential spatial sampling of the core-top 
and LGM datasets on the similarity-decay pattern, we subsampled the 
core-top dataset to sites within a 100 km radius from the LGM samples 
and to the sites nearest to the LGM samples. The decay patterns of the 
subsampled data are nearly identical to the pattern using all core-top 
samples (Extended Data Fig. 7). Hence, we conclude that our reference 
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core-top similarity-decay pattern is not affected by differential sam-
pling of the temperature gradient.

The anomalously high similarities among LGM assemblages at 
large simulated temperature differences do not arise from chrono-
logical uncertainty (Extended Data Fig. 8). They are present in all four 
subsets of the data, except in the subset with lowest chronological 
confidence (level 3) because of the spatial distribution of the sam-
ples. Notably, the thermal limits for differences between assemblages 
derived from the core-top data (black step(ped) line in Fig. 1) already 
incorporate noise due to chronological uncertainty in the data39 and 
hence represent conservative estimates of the position of these limits. 
The fact that some simulated temperature differences fall outside these 
limits thus underscores the chronological robustness of our findings.

To evaluate whether the anomalous LGM similarity-decay pattern 
reflects model-specific bias or arises from the LGM simulations, we 
compared the climatology-derived core-top similarity-decay pattern 
with the patterns obtained using the (pre-industrial) control runs 
of the climate models. The patterns obtained using simulated tem-
peratures show only minor differences from those obtained using 
climatology and, importantly, do not show the excess similarities at 
large temperature differences (Extended Data Fig. 3). Thus, the odd 
pattern in the LGM similarity decay is a phenomenon related to the 
way glacial conditions are simulated. At the same time, these results 
suggest that the similarity-decay pattern in the core-top data is not due 
to post-industrial changes in temperature gradients, consistent with 
the globally uniform nature of anthropogenic warming114.

Finally, the difference between the modern similarity-decay pat-
tern and the simulation-based LGM pattern could in theory also arise 
from some degree of ecological noise in the assemblage data. We note, 
however, that the cluster of site pairs with anomalously large tempera-
ture differences at high similarity lies outside the limits of the modern 
decay pattern (Fig. 2). Moreover, the difference in the decay patterns 
originates from the North Atlantic, where the strength of the modern 
similarity–temperature relationship is larger (pseudo r2: 0.71) than the 
global average (pseudo r2: 0.47). Here the pseudo r2 is calculated as 
1 − (model deviance

null deviance
) derived from a binomial generalized linear model with 

a log link to account for the nonlinear nature of the data. We therefore 
conclude that the difference between the modern decay pattern and 
the LGM decay pattern using simulated temperatures is robust.

Temperature estimates
Previous work has documented that temperature is the single best 
predictor of planktonic foraminifera species assemblage composition 
on a global scale23,115, and various transfer-function techniques have 
been successfully applied to obtain temperature estimates of the past 
ocean17. Here we use the modern analogue technique to derive tem-
perature estimates from the species assemblages because this method 
is conceptually simple and allows for nonlinearity in the response of 
planktonic foraminifera assemblages. We develop transfer-function 
models for individual regions to minimize the effect of endemism 
of cryptic species, which has been shown to negatively impact 
transfer-function performance17. Regions were defined as in previous 
work17, and the taxonomy was harmonized to retain as many samples 
possible in each region. Specifically, this means that for the Mediter-
ranean, the subspecies of Globigerinoides ruber were lumped and that 
Globorotalia menardii and Globorotalia tumida were combined in the 
Pacific. Temperature estimates were based on the similarity weighted 
mean of the ten best analogues, and analogue quality was assessed 
using the squared chord distance because this metric has been shown 
to be most effective in identifying analogues in microfossil datasets116.

Vertical and seasonal attribution. In contrast to previous work, we 
provide temperature reconstructions for a single season only. This 
is because seasonal seawater temperatures are highly correlated, 
and temperatures at different seasons have therefore little, if any, 

independent predictive power17,23,117. This issue has been touched 
upon before17, and here we make the conscious decision to break 
with convention and provide only a single independent estimate 
of past temperature. However, ambiguity persists as to which sea-
sonal temperature the species assemblages reflect best14. Given the 
three-dimensional nature of the ocean, the same applies to the vertical 
dimension because planktonic foraminifera have not only variable 
seasonal abundances118 but also variable depth habitats in the global 
ocean119. We address this problem by estimating the proportion of 
variance in the species assemblages that is explained by temperature 
during different seasons and at different depths14,117. The tempera-
ture during the season and at the depth that explains globally most 
of the variance in the species assemblages is then used for the final 
transfer-function model that is applied to estimate temperature from 
the fossil samples.

We first performed this analysis using canonical correspondence 
analysis on the core-top assemblages data using temperatures from 
climatology as constraining variables. Then to test the significance 
of temperature estimates from transfer functions, we also evaluated 
to what degree the temperatures predicted from both the core-top 
and the LGM assemblages explain the variance in the assemblages 
themselves. In doing so, we extended the framework used to assess 
significance of transfer-function predictions in previous work14,117 
from the temporal to the spatial domain. We derived the proportion of 
variance in the first principal component of the assemblage data that 
is explained by the predicted temperatures assuming that this first 
component captures the imprint of the environmental variability (in 
space) on the assemblage data.

We assessed four seasons and annual mean at 14 different 
depth levels in the upper 500 m for five regions; that is, we built 350 
transfer-function models to derive temperature estimates for the 
modern and fossil dataset. Given the larger vertical than seasonal 
temperature gradients in the tropics28, we analysed tropical and 
extratropical regions separately. Irrespective of whether we assessed 
core-top or LGM assemblages, we found that seasonal temperatures 
explain nearly the same amount of variance in the species assem-
blages in most regions and that the choice of seasonal temperature 
for transfer-function development is not critical (Extended Data  
Fig. 9). A different picture emerges when considering depth. Especially 
in the tropics, there is a clear pattern in the depth at which temperature 
explains most of the variance; outside of the tropics, the dependence 
on depth is markedly smaller (Extended Data Fig. 9). Although there 
are regional differences, the tropics generally show a maximum in the 
explained variance that is not at, but slightly below, the sea surface. 
Globally, most of the variance in the modern as well as in the fossil 
planktonic foraminifera assemblages is explained by mean annual 
temperatures at 50 m water depth. We thus estimated LGM tempera-
tures using the transfer-function model trained on annual-mean tem-
peratures at 50 m water depth.

Negligible effect of poor analogues. A potential caveat with the 
use of transfer functions is the presence of fossil samples with low 
similarity to the samples in the modern training set, the so-called 
poor analogue problem. Warm LGM subtropical gyres, a consistent 
feature of planktonic foraminifera assemblage-based seawater tem-
perature reconstructions16,17, have previously been attributed to poor 
analogues. To some degree, this problem can be related to the species 
assemblage variability captured in the training set. Compared with 
previous work, we used a much more extensive core-top dataset, and 
we thus expect the poor analogue problem to be smaller. Neverthe-
less, to assess the possible effect on the reconstructed temperature 
of LGM assemblages that lack close analogues in the core-top dataset, 
we filtered out samples with a minimum square chord distance to the 
core-top samples above the fifth percentile of the pairwise dissimilari-
ties in the global core-top dataset111 (Extended Data Fig. 10). The mean 
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and 95 percentile range of the reconstruction are −2.45 °C (−9.51 to 
1.22 °C) without analogue filtering. Global analogue filtering reduces 
the number of samples and sites by 169 and 15, respectively, and yields 
a mean temperature change of −2.46 °C (−9.55 to 1.27 °C). When using 
a regionally defined threshold, the dataset is reduced by 252 samples 
and 29 sites, and the effect on the reconstructed temperature change is 
also very small (mean −2.46 °C (−9.56 to 1.21 °C)). Thus, this sensitivity 
test shows that the influence of poor analogues in the LGM dataset is 
negligible and that the subtropical warming is robust.

Uncertainty. Because of the strong spatial autocorrelation in ocean 
temperatures, the uncertainty of the temperature prediction based 
on planktonic foraminifera assemblages is also spatially correlated. 
We have assessed the effect of the reconstruction uncertainty using a 
Monte Carlo approach. For each region, we generated 1,000 random 
temperature fields with the same spatial autocorrelation structure as 
the residuals of the transfer-function model. We added these to the 
reconstruction itself to determine the uncertainty in the overall esti-
mated mean temperature change. Whenever multiple estimates were 
available for the same site, we reduced the uncertainty by the number 
of observations. The reconstruction errors (2 s.d.) vary regionally, with 
a median value of 1.52 °C. This uncertainty is larger than previously 
reported17 because our estimate accounts for spatial autocorrelation120.

Anomalies. We present temperature anomalies with respect to clima-
tology because not all LGM samples have a nearby core-top sample. 
Presenting anomalies with respect to temperature derived from the 
core-top assemblages would therefore result in reduced spatial cov-
erage. We have nevertheless assessed whether the way the anomalies 
are calculated matters for the reconstructions by comparing the two 
different temperature anomalies for LGM sites with core-top samples 
within a 100 km radius. We find only a negligible and random difference 
(0.01 ± 1.27 °C; 1 s.d.) without any spatial pattern, validating the use of 
anomalies versus climatology.

Calculations. All calculations and visualizations were made in R121 using 
the packages tidyverse122, vegan123, geosphere124, patchwork125, rioja126, 
broom127, fields128, rgdal129, sp130,131 and gstat132,133. The reconstruction 
shown in Fig. 3 was gridded in an optimal way using the Data Interpo-
lating Variational Analysis method134 as outlined in ref. 135, but based 
on annual-mean sea-ice extent reconstruction and transfer-function 
results.

Data availability
The ForCenS core-top planktonic foraminifera compilation is available 
at https://doi.org/10.1594/PANGAEA.873570 and the LGM assemblages 
can be accessed at https://doi.org/10.5281/zenodo.10000129. The 
foraminifera-based temperature are available at https://doi.pangaea.
de/10.1594/PANGAEA.962958. The data PMIP simulation is available at 
the World Data Centre for Climate (https://www.wdc-climate.de/ui/). 
The DOIs for the individual simulations are provided in the references 
of Methods. Data from the simulations with the AWI-ESM can be found 
at https://doi.org/10.5281/zenodo.8417872.

Code availability
The code used for the analysis and visualization is available at https://
github.com/lukasjonkers/LGM_forams.
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Extended Data Fig. 1 | LGM similarity decay patterns for individual model 
simulations. Panel a shows the similarity-decay patterns based on simulated 
LGM temperatures and b the difference from the modern pattern (Fig. 2a). Note 
the presence of samples with high similarities (above 0.75) at large environmental 

distances (around 10 °C) that characterises all simulations and is inconsistent 
with the modern distance-decay pattern. Box-plots indicate the median and 
interquartile range of the data; the whiskers extend to 1.5 times this range.
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Extended Data Fig. 2 | Spatial origin of the anomalous LGM similarity decay 
pattern. Spatial distribution of the site pairs that show high similarity at large 
simulated thermal differences (the area in red in Fig. 2c). Transparency of the 

dots indicates in how many pairs the site occurs. The distribution of these 
sites with similar species assemblages is consistent with the distribution of the 
cold-water assemblages during the LGM (Fig. 1). Map made with Natural Earth.
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Extended Data Fig. 3 | Similarity decay pattern based on simulated pre-
industrial temperatures. Modern (core top) similarity-decay patterns based 
on simulated pre-industrial temperatures from each simulation (a–h) and the 
difference from the reference similarity decay using climatology (i–p). The decay 
using simulated temperatures is largely similar to the decay obtained when using 

climatology, indicating that the anomalous similarity-decay pattern using LGM 
simulations is not related to overall model bias, but reflects the simulated LGM 
temperature pattern. Box-plots indicate the median and interquartile range of 
the data; the whiskers extend to 1.5 times this range.
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Extended Data Fig. 4 | Ecological evidence that the simulated glacial cooling 
is too uniform. The similarity decay pattern obtained using LGM assemblages 
and modern temperatures (a) also shows the existence of nearly identical 
species assemblages at large thermal differences that characterises the pattern 
obtained using simulated LGM temperatures (compare to Fig. 2b). The resulting 
difference from the core top pattern (b) also differs only marginally from the 
pattern obtained using simulated LGM temperatures (compare to Fig. 2c). 
Panel c shows the difference between the decay pattern obtained from LGM 

assemblages and using modern temperature (panel a in this figure) and using 
simulated LGM temperatures (Fig. 2b). The fact that the similarity decay patterns 
are nearly identical indicates that the simulated LGM temperature field is merely 
offset from the modern by a globally constant amount, whereas the species 
assemblages indicate marked spatial differences in the cooling and fundamental 
changes in the oceanic thermal gradients. Box-plots in a indicate the median and 
interquartile range of the data; the whiskers extend to 1.5 times this range.
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Extended Data Fig. 5 | Comparing reconstructed and simulated seawater 
temperatures. a) latitudinal patterns. In almost all cases, the simulated LGM 
temperature pattern is similar to the modern pattern, whereas the foraminifera-
based LGM reconstruction indicates that the gradient in the Northern 
hemisphere was much steeper, and that the contrast between high and mid 
latitudes was reduced. The reduction in the thermal contrast between the high 
and mid northern latitudes is also visible in the similarity-decay pattern (Fig. 2). 

All comparisons are carried out at the sites of the reconstruction; dots represent 
averages of 10 ° bins; error bars, mostly hidden behind the dots, are standard 
errors of the mean. b) difference between simulated and reconstructed LGM 
temperature anomalies in the equilibrium simulations. The overall pattern is 
similar for all models, with the greatest difference observed in the midlatitude 
North Atlantic Ocean; however, the magnitude of the difference varies by model. 
Maps made with Natural Earth.
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Extended Data Fig. 6 | Difference between simulated and reconstructed LGM temperature anomalies in the simulations with an additional freshwater flux 
into the North Atlantic. Headers refer to the different experiments where freshwater forcing was applied for different durations to different location, for details see 
Methods. Maps made with Natural Earth.
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Extended Data Fig. 7 | The modern similarity decay pattern is robust and not 
an artefact of the sampling distribution. The plots are like Fig. 2, showing the 
pairwise similarity for all samples; brighter colours indicate higher density of 
pairs between which the environmental and community distance is determined. 
Box-whisker plots highlight the general similarity decay pattern and show the 
median and interquartile range of the data; the whiskers extend to 1.5 times 
this range. The pattern in the entire core top data set is nearly identical to that 
in the core top samples that are within 100 km of an LGM sample (a), as well as 
the pattern in the core top samples closest to the LGM samples (b). Importantly, 

the cluster of LGM assemblage pairs with high similarity at large simulated 
temperature distances visible in Fig. 2 is absent here in both subsets. Note also 
that the differences between the subsets of the modern core top samples  
(c, d) are smaller than the differences between the core top pattern and the LGM 
pattern using simulated temperatures (Fig. 2). The step lines in c and d show 
the 99th percentile of the temperature differences across the similarity range 
(black for the entire dataset (as in Fig. 2) and orange for the subset). The small 
differences show that there is negligible effect of subsetting the core top data on 
the assemblage limits.
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Extended Data Fig. 8 | Sensitivity of the similarity decay pattern among 
LGM planktonic foraminifera to chronological control. Chronological 
control decreases from 1–3; level 4 indicates legacy samples for which too little 
information is available to establish chronological robustness (see details in 

Methods). Importantly, the anomalously high similarities at large temperature 
gradients are formed by samples with high chronological confidence. The 
pattern is therefore likely robust against age uncertainty. Maps made with 
Natural Earth.
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Extended Data Fig. 9 | Transfer function model attribution. Temperatures, 
either observed (Climatology) or predicted (Core top, LGM), that explain most of 
the variance in the core top and in the LGM planktonic foraminifera assemblages 
are likely to be the best candidates for reconstruction. The graphs show the 
fraction of variance in the planktonic foraminifera assemblages that is explained 
by temperature at different times of the year (colours) and at different depths 
in the water column. Left column: results from CCA using core-top assemblage 
data and climatology temperature data; middle column: variance explained 
by the core-top data (Modern) and temperatures predicted using transfer 

functions; right column: species variance in the LGM data set explained by the 
foraminifera-based reconstructions. These analyses show that temperatures 
from all seasons explain approximately the same amount of planktonic 
foraminifera assemblage variability in all regions. However, there are marked 
differences in the amount of variance explained by temperatures at different 
depths. The sensitivity to depth is higher in the tropics, consistent with the larger 
vertical temperature gradients. Globally, most of the variance in the planktonic 
foraminifera assemblages is explained by annual-mean temperatures at 50 m 
water depth.
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Extended Data Fig. 10 | The reconstructed temperature pattern based on 
planktonic foraminifera assemblages is not affected by poor analogues in 
the LGM dataset. The left-hand column shows the reconstructed temperature 
anomalies and the black lines indicate the latitudinal patterns; the right-hand 
column shows the difference between the mean simulated and the reconstructed 
temperature anomalies. Top row is the reconstruction shown in the main text 

without analogue filtering. The rows below show the data with global and 
regional analogues filtering (Methods), respectively. The latitudinal pattern of 
the complete dataset (top row) is plotted in red in the panels below, but remains 
almost invisible because of the overlap. Note that the slight warming at many low 
latitude sites and in the Pacific is not an artefact of poor analogues. Maps made 
with Natural Earth.
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