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Extratropical forests increasingly at risk due 
to lightning fires

Thomas A. J. Janssen    1 , Matthew W. Jones    2, Declan Finney    3, 
Guido R. van der Werf    1,4, Dave van Wees    1,5, Wenxuan Xu    6 & 
Sander Veraverbeke    1

Fires can be ignited by people or by natural causes, which are almost 
exclusively lightning strikes. Discriminating between lightning and 
anthropogenic fires is paramount when estimating impacts of changing 
socioeconomic and climatological conditions on fire activity. Here we use 
reference data of fire ignition locations, cause and burned area from seven 
world regions in a machine-learning approach to obtain a global attribution 
of lightning and anthropogenic ignitions as dominant fire ignition sources. 
We show that 77% (uncertainty expressed as one standard deviation = 8%) of 
the burned area in extratropical intact forests currently stems from lightning 
and that these areas will probably experience 11 to 31% more lightning per 
degree warming. Extratropical forests are of global importance for carbon 
storage. They currently experience high fire-related forest losses and have, 
per unit area, among the largest fire emissions on Earth. Future increases in 
lightning in intact forest may therefore compound the positive feedback 
loop between climate change and extratropical wildfires.

Global fire activity has decreased since the early 2000s, driven mainly 
by the decline of human-caused fires in savannahs, linked to a mixture 
of agricultural intensification, cropland expansion and shifting rainfall 
patterns1,2. By contrast, fire activity has increased in many forested 
extratropical regions, including the western United States3 and South-
east Australia4, eastern Siberia5 and western Canada6. Tropical savannah 
and grassland fires account for approximately 67% of the global burned 
area (Fig. 1a), while extratropical forest fires account for less than 5% of 
the global burned area7. Because of the abundance of tropical savannah 
and grassland fires, changes in these fires have dominated the declining 
global burned-area trend1,7. Nevertheless, extratropical forests are of 
global importance because of their considerable carbon (C) storage 
and biodiversity8. While changes in extratropical forest fire activity 
may be masked in global trends in burned area9,10, the C emitted from 
these fires has offset the reduced C emissions from fires in tropical 
savannahs9. Therefore, increased fire activity in extratropical forests 
is showing potential to disproportionately perturb the global C cycle11.

Fires can have an anthropogenic or natural ignition source. Anthro-
pogenic fires vary widely in their drivers and include, among others, 
planned management fires, deforestation fires, accidents and arson12. 
Natural fires originate almost exclusively from lightning13. Lightning 
and anthropogenic fires have different characteristics14,15. In the United 
States, for example, lightning fires are on average larger, more intense 
and more strictly constrained to remote areas and periods of extreme 
fuel dryness than anthropogenic fires14. In general, lightning fires pre-
vail in remote landscapes and usually occur during the relatively short 
seasonal peak in lightning occurrence, which often co-occurs with a 
seasonal low in fuel moisture16–18. Conversely, anthropogenic fires occur 
throughout the year, and human accessibility is a key determinant of 
anthropogenic ignitions19.

Due to their different drivers and characteristics, lightning and 
anthropogenic fires might show diverging future trends in different 
regions. While, for example, anthropogenic savannah fires might show 
a continued decline in the future with agricultural intensification1 and 
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our understanding of trends in global fire activity, burned area, inten-
sity and behaviour and for enabling accurate representation of fires 
in global land-surface models. In this Article, we identify the dif-
fering temporal and spatial niches of anthropogenic and lightning 
fires and construct statistical models to attribute the dominance of 

continued limitations to vegetation productivity through decline in 
rainfall2, lightning fire activity in boreal regions may increase due to 
interacting trends induced by climate change, including increases 
in dry fuel availability and lightning activity13,17. Differentiating 
between anthropogenic and lightning fires is essential to improving 
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Fig. 1 | Global burned area and fire-cause predictors. a, The global burned 
land area frequency, here calculated as the mean annual area burned between 
2001 and 202037 divided by the land area per 0.5° grid cell. b, The percentage 

low-impact land per 0.5° grid cell34. c, The correlation between the climatological 
mean monthly lightning density19 and burned area. d, The correlation between 
the climatological mean monthly FWI and burned area.
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lightning or anthropogenic ignition sources evident in global patterns 
of fire activity and burned area. Specifically, we used the XGboost 
machine-learning algorithm to predict the fractions of fires related to 
lightning and anthropogenic ignition sources at 0.5° resolution and 
separately to predict the area burned by those fires (Methods). The 
predictors used in the model were the fractional cover of low-impact 
land (a measure of remoteness), the correlation between monthly 
lightning and burned-area climatologies (a measure of temporal 
coincidence between potential lightning ignition sources and fire) 
and the correlation between monthly fire-weather index (FWI) and 
burned-area climatologies (a measure of the temporal coincidence 
between fuel dryness and fire; Methods). For model training, we assem-
bled a dataset of more than 1.2 million records of individual fires and 
their causes spanning seven extratropical regions, using a weighted 
sampling to ensure that samples from North America did not dominate 
the training dataset (Methods, Extended Data Fig. 1 and Supplemen-
tary Table 1). We used our model to identify the regions most at risk 
of increased lightning fire activity with climate change and evaluated 
the sensitivity of lightning to climate change using projections from 
climate models.

Lightning fires dominate in extratropical forests
Our model reproduced large portions of the spatial variability present 
in the reference data (Figs. 2 and 3). Indeed, the two statistical models 
explained on average 53% of the spatial variability in fraction of light-
ning fires and 39% of the spatial variability in the fraction of burned 
area from lightning (Extended Data Fig. 4). Furthermore, the models 
performed well in discriminating lightning- and human-dominated 
fire regimes in the independent test data and were robust against dif-
ferent splits of model training and validation datasets (Extended Data 
Fig. 1, Supplementary Text 1 and Supplementary Table 2). The fraction 
of low-impact land showed the highest feature importance in both 
Extreme Gradient Boosting (XGBoost) models. The seasonal correla-
tion between lightning and burned area had the second-highest feature 
importance, while the correlation between fire weather and burned area 
had the lowest feature importance yet still positively contributed to 
the overall model performance (Supplementary Text 1 and Extended 
Data Fig. 3).

Our results show that, on a global scale, lightning is the primary 
ignition source of fires in temperate and boreal forests and confirm  
that anthropogenic fires dominate savannahs and agricultural lands 
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Fig. 2 | Relationships between the predictors and causes of fire and burned 
area. a–d, Lightning fires (a,b) and the burned area attributed to lightning (c,d) 
tend to be dominant in areas with low human impact. Furthermore, lightning 
fires (a) and the burned area from lightning (c) also tend to have a high seasonal 

correlation between lightning and burned area. Finally, human-dominated fire 
regimes are found in regions with a low seasonal correlation between fire weather 
and burned area (b,d). Data points represent 0.5° geospatial grid cells obtained 
from reference data from seven world regions (Extended Data Fig. 1).
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(Fig. 3). Here we focus on intact-forest landscapes, defined as 0.5° spatial 
grid cells with at least 1% intact-forest8 cover (Fig. 4a). We estimate that 
in extratropical intact-forest landscapes, 77% (spatial standard deviation 
weighted by burned area = 34%, standard deviation of uncertainty = 8%) 
of the burned area stems from lightning, much larger than the estimates 
for tropical intact forests or global estimates (Fig. 5a). Extratropical intact 

forests currently experience a gross fire-related forest loss rate of 0.25% 
of their extent per year (spatial standard deviation weighted by land 
area = 0.45% per year), which is almost triple that of the fire-related forest 
loss rates observed in intact tropical forests or the global average (Fig. 5b).

The temperate and boreal forests contain the largest area of 
remaining intact forest on Earth (~53%, or 6.8 million km2), larger 
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than the area covered by intact tropical forest (6.1 million km2;  
Fig. 4a)8. In addition, the temperate and boreal forests are currently 
also experiencing high fire-related forest loss rates (Fig. 4b)20 and are 
characterized by some of the largest carbon combustion rates per 
unit area on Earth (Fig. 4c)21. Extratropical intact-forest landscapes 
accounted for 1.2% of the global burned area between 2002 and 
2020 yet emitted 8.5% of the global carbon emissions from fires21.
The geographical overlap among lightning-dominated fire regimes, 
high C combustion and prevalence of intact forest demonstrates the 
vulnerability of extratropical intact forests to increases in lightning 
fires (Fig. 5).

On the basis of a global state-of-the-art model of fire fuel combus-
tion and emissions21, we calculated that fires in extratropical intact 
forests combust on average 2.87 kgC m−2 (spatial standard deviation 
weighted by burned area = 1.31 kgC m−2), which is almost double the 

average combustion rate of fires in tropical forests (1.63 ± 1.67 kgC m−2) 
and more than five times the global average (0.56 ± 0.78 kgC m−2;  
Fig. 5c). By comparison, field-derived C combustion measurements in 
extratropical intact forests have a mean combustion rate of 4.95 kgC m−2 
(standard deviation: 7.03 kgC m−2) (Extended Data Fig. 5), suggesting 
that the global model might underestimate the actual C combustion 
from these extratropical forest ecosystems.

Our model predicted with high certainty that humans are the 
dominant source of fire ignitions in open savannah regions (Fig. 3), 
in line with expectations for these regions1. By contrast, the more 
remote and densely vegetated savannahs and tropical forests of Central 
Africa, the Amazon basin, Borneo and New Guinea occasionally show 
lightning-dominated or mixed fire regimes, although with consider-
able uncertainties (Fig. 3). Fires in these inner tropical rain forests are 
extremely rare (Fig. 1a), and although it has been assumed that lightning 
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plays a limited role in the fire regime, there has been little direct quan-
titative evidence with which to test this assumption22. While our model 
already attaches a large uncertainty to the attribution of dominant 
fire cause in tropical forests, we reiterate that our training dataset did 
not include records from these regions (Extended Data Fig. 1), which 
further weakens our confidence in the attribution of lightning as igni-
tion source in tropical forests. Therefore, we interpret these results 
as an indicator that lightning ignitions may be more important than 
previously thought in tropical forests and that regionally focused work 
involving the study of individual fires is required to clarify the relevance 
of lightning ignitions in these regions.

Increases in lightning in extratropical forests
The temperate and boreal forests, where lightning fires dominate,  
coincide geographically with expected increases in lightning because 
of climate change. We explored the risk of increases in lightning using 
two lightning modelling approaches, one based on the cloud-top 
height (Fig. 6a) and another based on the cloud ice flux (Fig. 6b). Per 
degree warming, the lightning model based on the cloud-top height 
approach estimates a 31.1% K−1 (spatial standard deviation weighted 
by grid cell area = 17.2% K−1) increase in lightning in extratropical 
intact-forest landscapes, whereas the model based on the cloud 
ice-flux approach projects a more modest increase of 10.8% K−1 (spatial 
standard deviation weighted by grid cell area = 10.2% K−1). For the extra-
tropical intact forests north of 55° N, the multimodel mean estimated 
increase in lightning per degree warming from ref. 23 of 27.8% K−1 falls 
between the estimates from the cloud ice-flux approach (14.6% K−1) 
and the cloud-top height approach (34.8% K−1). For both approaches, 
the lightning increases over extratropical intact forests are larger 
than the global average, whereas over tropical intact forests, future 
lightning projections diverge in sign (Fig. 5d). These results suggest 
that in extratropical intact-forest landscapes, lightning fires not only 
are most prevalent but also are expected to become more frequent in 
the future, with a potential increase in fire-induced C emissions from 
these ecosystems.

Climate–lightning–fire feedbacks in 
extratropical forests
Intact extratropical forest landscapes store large amounts of C in tree 
biomass and below-ground8. An intensification of the lightning fire 
regime in extratropical intact forests has the potential to accelerate 
forest degradation and forest loss. By reducing forest cover, an increase 
in lightning fires results in a direct decline of the terrestrial C stock. 
Since the mid-1970s, lightning fire activity has increased markedly in 
Alaska and parts of northwestern Canada13. In boreal regions, a portion 
of the C lost to increased fire is legacy C24 that has escaped the previ-
ous fire cycle. In other words, legacy C is C that had accumulated in 
organic soils before the last fire cycle. In this way, legacy C emissions 
represent an accelerating (warming) carbon cycle–climate feedback. 
Furthermore, approximately 91% of the areas where extratropical intact 

forests prevail in the Northern Hemisphere are underlain by permafrost. 
Natali et al.25 estimated that fires may amplify emissions of greenhouse 
gases from permafrost thaw by 30% by the end of the century following 
a moderate emissions scenario. Greenhouse gas emissions after fires in 
permafrost peatlands may thus represent a range of positive warming 
feedbacks that results from increases in lightning fires.

The two lightning climate proxies capture key physical  
components of lightning generation and represent the dominant 
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parameterization-based uncertainty in future lightning projections. 
Their consistency in projection in boreal regions provides robust 
evidence for increasing lightning in extratropical forests with climate 
change. Previously, the cloud-top height and cloud ice-flux models have 
been used to demonstrate uncertainty in whether global and tropical 
lightning will increase or decrease in response to climate change26. 
However, there is less uncertainty for projections over the northern 
extratropics, where increases are consistently projected in both models 
(Figs. 5d and 6). For the northern land areas, the projections presented 
here (Figs. 5d and 6) are consistent with projected increases in lightning 
based on another climatological proxy, the multiplication of precipita-
tion and convective available potential energy23. The increase of light-
ning occurrence in boreal intact forests, especially in combination with 
fuel drying17, will probably result in a higher potential for lightning fires 
in boreal forests and associated increases of fire-induced C emissions.

Our approach does not account for the effect that changing 
socioeconomic drivers might have on the potential climate-driven 
increase of lightning fires in the future. Improvements in communi-
cation technology, early-warning systems and accessibility might aid 
suppression of lightning fires in extratropical forests27. Conversely, 
expected increases in land abandonment in rural areas might lead to 
a build-up of fuel conducive to lightning and anthropogenic ignitions 
and fire spread, which is, for example, already observed in Mediter-
ranean mountain regions28,29. Furthermore, improved accessibility to 
extratropical intact forests could also increase their vulnerability to 
anthropogenic ignitions20.

Towards a fire-cause attribution of individual 
fires
In this study, we attributed global fires and their burned-area patterns 
to anthropogenic and lightning causes on a relatively coarse spatial 

scale of 0.5° by using reference data and statistical models. While our 
approach provides a coarse global fire-cause attribution, it does not 
resolve ignition causes in a spatially and temporally explicit manner 
at the scale of individual fires. Recent efforts have attributed indi-
vidual ignitions to anthropogenic or lightning causes by combining 
high-resolution fire ignition data from remote sensing with lightning 
strike observations and infrastructure data17,18,30–33. These studies have 
matched individual lightning strikes to fire ignition points and dem-
onstrated the importance of dry lightning for ignition in boreal forest 
ecosystems17,18.

Recent studies have also sought to identify the ignition sources of 
individual fires in the tropics from observations of individual lightning 
and fire ignition points31,32. While these studies have shown that most 
ignitions in savannah and tropical forests are caused by people, they 
also indicate that lightning regularly causes fire during the transition 
from the dry to the wet season in some of Brazil’s savannah and tropical 
forest ecosystems31,32. Our models in part corroborate the findings of 
regional work by predicting a mixture of lightning and anthropogenic 
fires within Brazilian biomes and the global tropical forests more gener-
ally (Fig. 3). Nonetheless, the high uncertainty in our model prediction 
of lightning fire in tropical forests highlights the possibility that the 
contribution of lightning to fire activity and burned area is overpre-
dicted in our model. A possible explanation for this could be that the 
data layer that we used to quantify human impact on the land34 may 
be too coarse to accurately capture indigenous land use in tropical 
forests, while the alignment of the annual peaks in lightning activity 
and fire weather with the timing of fire ignitions by people may lead 
to the misidentification of human fires as lightning (and vice versa). 
Further developments in spatially explicit mapping of fire cause for 
the entire Earth surface will become possible when high-resolution 
lightning and ignition data become globally available.
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Relevance for global fire models
We show a sensitivity of extratropical intact forests to potential 
increases in lightning fires, which would have far-reaching conse-
quences for terrestrial C storage and biodiversity. Our global fire-cause 
attribution between lightning and anthropogenic fires contrasts 
human-dominated fire regimes in savannahs and agricultural lands 
with lightning-dominated fire regimes in remote temperate and boreal 
forests. While changes in human ignitions, landscape fragmentation 
and increases in wet climatic conditions largely explain the decreasing 
trend in fire activity in savannahs1,2, changes in lightning occurrence 
have the potential to increase lightning ignitions in C-rich temperate 
and boreal forests9. In these forests, increases in lightning occurrence 
are likely to further exacerbate the effects of increased flammabil-
ity on fire occurrence and burned area17,35. This will be especially the 
case as peak lightning activity typically coincides with warm and dry 
conditions in summer months in extratropical regions16. Our global 
fire-cause attribution partly explains the contrasting observations of 
widespread declines in savannah fires and reported increases in fire 
activity in many temperate and boreal ecosystems6,13,36. We highlight 
the importance of discriminating between different causes and drivers 
of fire in Earth system models when projecting future trends of regional 
and global fire activity. This exercise is paramount to advancing our 
capabilities to model fire occurrence under changing socioeconomic 
and climatological conditions.

Online content
Any methods, additional references, Nature Portfolio reporting  
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author  
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Methods
Fire-cause reference data
We acquired fire-cause reference data for seven different world 
regions: the United States, Canada, Portugal, Southern France, Victoria  
(Australia), Tasmania (Australia) and Yakutia (Russia) (Supplemen-
tary Table 1). These datasets contained data on the location, timing, 
size and cause of individual fires. We used data starting from 2001 
onwards in correspondence with the Moderate-Resolution Imaging 
Spectroradiometer (MODIS) burned-area data used in our analysis. 
We aggregated all anthropogenic and lightning fires per 0.5° grid cell 
and calculated the fractions of anthropogenic and lightning fires and 
the fractions of burned area from anthropogenic and lightning fires 
(Extended Data Fig. 1).

For the United States, we downloaded fire-point data from the 
interagency Fire Program Analysis Fire-Occurrence Database version 
412, which contains government records between 1992 and 2015. After 
removing fires with unknown causes, we retained 1,091,678 records 
between 2001 and 2015 for all American states excluding Alaska. For 
Alaska, we opted for the Alaska fire-history points database main-
tained by the Alaska Interagency Coordination Center because of 
its high-quality record in the satellite era38. After removing fires of 
unknown cause, we retained 8,810 records for Alaska between 2001 
and 2019.

For Canada, we acquired fire-point data from the Canadian 
National Fire Database39. After removing fires with unknown causes, 
we retained 117,947 records between 2001 and 2018. For Portugal, we 
received the governmental fire-point data record from the Instituto 
da Conservação da Natureza40. After removing all fires with unknown 
cause, we retained 9,018 records between 2001 and 2020. For Southern 
France, we downloaded the government records from the Prometheus 
fire database41. After removing fires with unknown cause, we retained 
13,559 records between 2001 and 2020. For Victoria, Australia, we 
received the government records from the Forest Fire Management 
Victoria agency. After removing fires with unknown cause, we retained 
16,593 records between 2001 and 2020. For Tasmania, Australia, we 
downloaded fire-history data from Tasmania Fire Service and Parks 
and Wildlife Service42. After removing fires with unknown cause, we 
retained 3,959 records between 2001 and 2020.

For Yakutia, Russia, individual fire starts and fires between 
2012 and 2020 were mapped by combining the MODIS MCD64A1 
burned-area product and the Visible Infrared Imaging Radiometer 
Suite VNP14IMG active-fire product18. Fire starts were attributed to 
lightning, human, overwintering and unknown causes using a set of 
spatial and temporal rules18. After removing fire starts from an unknown 
cause and overwintering cause, which represented less than 5% of the 
fire starts, we retained 2,525 records between 2012 and 2020.

Lightning data
We used the contemporary lightning climatology at 0.5° from the 
Optical Transient Detector (OTD) onboard Orbview-1 and the Light-
ning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring  
Mission version 2.3.201543. This lightning climatology product includes 
data from the OTD sensor between 1995 and 2000 acquired from 
a near-polar orbit, while the climatology included LIS data for the 
regions between 38° N and 38° S between 1998 and 2014. The overlap 
between the LIS and OTD datasets between 38° N and 38° S makes the 
merged product more robust for these areas43. The OTD and LIS sen-
sors recorded lightning flashes, which include both cloud-to-cloud 
and cloud-to-ground lightning strikes. Flash rates from OTD correlated 
strongly with cloud-to-ground lightning strike data from the Alaskan 
Lightning Detection Network23.

We used two different global projections of future lightning 
that are based on two different approaches to simulate lightning: 
the cloud-top height and cloud ice-flux approaches26. The cloud-top 
height approach is widely used and rooted in the positive associations 

among convective updraughts, thunderstorms and lightning44. The 
cloud ice-flux approach, however, accounts for cloud ice microphysics 
since the formation of ice and graupel particles is important for thun-
derstorm charging and associated lightning activity26. The cloud-top 
height and cloud ice-flux approaches lead to diverging future projec-
tions of lightning, especially in the low latitudes26. The cloud-top height 
approach predicts increases in lightning over most of the global land 
area, whereas the cloud ice-flux approach predicts decreases over 
most of the tropical land area and no noteworthy changes to modest 
increases in lightning over extratropical land. Simulations of both 
approaches were performed using the UK Chemistry and Aerosols 
model coupled to the atmosphere-only version of the UK Met Office 
Unified Model version 8.4. The atmosphere component is the Global 
Atmosphere 4.0. More details about the model set-up can be found in 
ref. 26. For both approaches, simulations were performed represent-
ing the years 2000 and 2100 under the representative concentration 
pathway 8.5. For the land areas north of 55° N, we further compared the 
results from the cloud-top height and cloud ice-flux approaches with a 
third approach that uses the multiplication of the convective available 
potential energy (CAPE) and precipitation as a proxy for lightning23. 
We compared the changes in lightning from the cloud-top height and 
cloud ice-flux approaches with the mean change in lightning from the 
CAPE × precipitation approach calculated from 15 global climate mod-
els. For all three approaches, we expressed the change in lightning per 
degree warming by assuming a linear relationship45 (Fig. 6).

Burned-area data
We used burned-area data from the MODIS MCD64A1 Collection 6 
burned-area product at 500 m resolution37 between 2001 and 2020. The 
MCD64A1 algorithm classifies burned area on the basis of fire-induced 
reflectance changes and thermal anomalies. We aggregated the burned 
area in 0.5° grid cells and calculated the monthly burned-area climatol-
ogy for the years between 2001 and 2020.

Low-impact land data
We used the global areas of low human impact at 1 km resolution data-
set34 to characterize low-impact land. In this dataset, 1 km2 pixels were 
classified into pixels with and without human impact by assimilat-
ing contemporary datasets on human population, livestock density, 
forest-cover change, land cover and night-time lights34. We calculated 
the fraction of low-impact land per 0.5° grid cell as the ratio between 
the number of land pixels without human impact and the total number 
of land pixels (Fig. 1b).

Intact-forest data
We used the delineation of intact-forest landscapes for the year 20008. 
Intact-forest landscapes are mosaics of forest and naturally treeless 
ecosystems with no remotely detected signs of human activity. The 
intact-forest landscape polygons are based on the vectorization of 
contiguous pixels with Landsat-derived tree cover higher than 20% and 
including water bodies and naturally treeless ecosystems. In addition, 
intact-forest landscape polygons have a minimum size of 500 km2, 
a minimum width of 10 km and a minimum corridor width of 2 km  
(ref. 8). In areas with intact-forest polygons of 500 km2, smaller patches 
of intact forest often exist, yet these are not included in the dataset. 
We calculated the fraction of intact forest per 0.5° grid cell as the ratio 
between the area of the intact-forest landscapes and the land area per 
grid cell (Fig. 4a). We used the Northern Hemisphere map from ref. 46 
to discriminate intact forest underlain by permafrost in the northern 
extratropics. We thereto converted the vectors to a 0.5° resolution 
raster on the basis of areal class majority.

Fire-related forest loss data
We used fire-related forest loss estimates between 2003 and 2020 from 
ref. 20. This methodology estimates gross fire-related forest losses 
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as it does not account for post-fire recovery. We derived fire-related  
forest losses at 500 m resolution by combining forest loss data from the 
Global Forest Change version 1.8 dataset47 with the MODIS MCD64A1 
burned-area37 and MCD14ML active-fires48 products. In short, after 
regridding the forest loss data onto a 500 m grid, fire-related for-
est losses were defined as spatiotemporal matches between forest 
loss and the occurrence of burned area or active fires. To account for 
delayed post-fire tree mortality, forest losses one year after the spatial 
match with a burned area or active-fire detection were also included in 
the fire-related forest loss estimate. We developed two scenarios for 
estimating fire-related forest loss. The first scenario assumed that all 
forest losses within a burned-area pixel or active-fire footprint were 
fire-related forest losses. A second, minimum probability, scenario 
accounted for the geolocational uncertainty of fire within active-fire 
pixels and the active-fire detection confidence. We then calculated the 
average of the two scenarios as our best estimate of fire-related forest 
loss, after validation with higher-resolution products. The fire-related 
forest losses were aggregated in 0.5° grid cells over the period between 
2003 and 2020 (Fig. 4b).

Carbon combustion data
We used C combustion, or area-normalized C emissions (in kgC m−2 
burned), between 2002 and 2020 from the state-of-the-art 500 m 
global biomass burning fuel consumption database, which will 
also be the basis for the Global Fire Emissions Database version 521. 
These estimates are based on a simplified version of the Carnegie– 
Ames–Stanford Approach model and assimilate several meteorological 
and remote-sensing datasets to estimate C combustion. The model-
ling framework is optimized and constrained using field-measured C 
combustion estimates21. We aggregated the C combustion data in 0.5° 
grid cells and calculated the mean over the period between 2002 and 
2020 and weighted for the burned area in the grid cell over the same 
period (Fig. 4c). The field measurements of carbon combustion from 
extratropical intact forests were also retrieved from the synthesis field 
measurement database of ref. 21 (Extended Data Fig. 5).

FWI data
We obtained the global 0.25° daily FWI from the fire-danger indices 
historical data from the Copernicus Emergency Management Service 
dataset49. The FWI is a unitless index derived from temperature, relative 
humidity, precipitation and wind speed and is considered a good indica-
tor of dry and hot weather conditions favourable for fire ignition and 
fire spread. The data were spatially aggregated to 0.5° and temporally 
averaged to monthly values for the period 2001–2020 to match the 
spatial and temporal resolution of the burned-area data in our study.

Fire-cause attribution models
The collated fire-cause attribution datasets consisted of 7,766 0.5° 
grid cells (Extended Data Fig. 1) with values ranging between 0%, 
indicating all fires and their associated burned area in that grid cell 
are ignited by humans, and 100%, indicating all fires are ignited by 
lightning. We used these two datasets, the fraction of lightning fires 
and fraction of burned area from lightning, in conjunction with three 
geospatial predictors for which we had global coverage (Fig. 1b–d), to 
estimate anthropogenic and lightning fires globally. The first predic-
tor variable was the fraction of low-impact land. The rationale behind 
using the fraction of low-impact land as a fire-cause predictor is that 
in areas with low human impact, lightning fires are more likely, while 
in areas with high human impact, anthropogenic fires are more likely 
(Extended Data Fig. 3c). The second predictor was the Spearman cor-
relation between the monthly climatologies of lightning and burned 
area. We used the non-parametric Spearman correlation to account 
for nonlinear relationships that occurred between the lightning and 
burned-area climatologies. The rationale behind using the seasonal 
correlation between lightning and burned area as a fire-cause predictor 

is that fires within grid cells with a high correlation are more likely to 
originate from lightning, while anthropogenic fires are more likely 
when there is a strong anti-correlation between the monthly lightning 
and burned-area climatologies. The third predictor was the Spearman 
correlation between the monthly FWI and burned area. The reason-
ing behind including the co-occurrence of dry weather conditions, 
favourable for fire ignition and spread, and burned area is that a strong 
correlation implies more natural fire regimes with a higher probability 
of lightning fires while the lack of a correlation or even anti-correlation 
implies a human-dominated fire regime, in which fires are more easily 
ignited, independent of weather conditions.

We built two separate XGBoost model routines50. One model pre-
dicted the fraction of lightning fires in each grid cell, and the other 
model predicted the fraction of burned area from lightning fires in each 
grid cell. Our reference data stemmed primarily from North America, 
and we therefore implemented a region-specific training data selec-
tion to geographically balance the model. To do this, we calculated 
for each region the number of samples that should be taken to have a 
sample proportional to the burned area of that region between 2001 
and 2020 (Supplementary Table 1). Subsequently, we selected from the 
reference data of each region 60% of this sample number as training 
and validation data, with replacement, and used all remaining data 
as test data. This resulted, for example, in 11% less training data from 
the North American region and 6% more training data from Yakutia, 
compared with a random 60% draw, accounting for the disparity in 
data availability between those regions. We tested the robustness of 
the two models using different training–test data splits (20%, 40%, 60% 
and 80%) and selected the 60% for training as it showed a good balance 
between internal model validation accuracy and high performance on 
the test dataset (Supplementary Table 2).

Our reference dataset showed a strong bimodal distribution, with 
most grid cells showing either a completely human-dominated fire 
regime or a completely lightning-dominated fire regime (Extended 
Data Fig. 2). When using regression objectives in the XGBoost model, 
or any other machine-learning algorithm, this specific bimodal dis-
tribution cannot be reproduced. As the variability in the data is never 
fully captured by the model, the model aims to minimize the error 
by predicting the more uncertain cases close to the overall mean 
(Extended Data Fig. 2). This results in a normal frequency distribu-
tion of the predicted grid cells around the mean (~56% of burned area 
from lightning and ~52% lightning fires), which does not resemble the 
frequency distribution in the reference data. To account for this, we 
classified the training data in human-dominated (<10% lightning fires) 
and lightning-dominated (>90%) fire regimes and omitted all other 
training data. These selections included 61% of the data for fire counts 
and 79% of the data for burned area. Subsequently, 100 individual 
XGBoost models were trained with a logistic regression objective using 
random subsets of 80% of this reclassified training data, and the remain-
ing 20% was used for validation. The predicted continuous outcomes 
between 0 and 100% of all models were individually assessed using 
the validation data (Supplementary Table 2 and Extended Data Fig. 4). 
Hereafter, each of the 100 continuous global model predictions were 
classified using a threshold into lightning fires (≥50%) or human fires 
(<50%). The average of these 100 binary model predictions showed a 
very similar frequency distribution as the reference data (Extended 
Data Fig. 2) and a good performance on the test data (Supplementary 
Table 2) and was therefore used as the final model output (Fig. 3a,c). 
The standard deviation of the 100 continuous model predictions was 
used as the model uncertainty (Fig. 3b,d).

Geospatial analysis
We discriminated between extratropical intact forest, tropical intact 
forest and all global land with burned area. Grid cells with intact forest 
were selected as soon as their fraction of intact forest exceeded zero. 
We then calculated the area-weighted mean and standard deviation 
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for the fraction of burned area from lightning, fire-related forest loss, 
C combustion and change in lightning for extratropical intact forest, 
tropical intact forest and globally (Fig. 5). The fraction of burned area 
and C combustion were weighted by burned area. Fire-related forest 
loss and the change in lightning were weighted by land area.

Data availability
All data used and produced in this paper are hosted at the Pangaea 
public repository at https://doi.org/10.1594/PANGAEA.939352.

Code availability
The code for this analysis is available from the corresponding author 
upon request.
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Extended Data Fig. 1 | Reference data for fire cause attribution. Reference data 
of a, the fraction of lightning fires of the total fire count, and b, the fraction of 
burned area from lightning of the total burned area. Data was available for seven 

different world regions: the United States of America (USA) including Alaska and 
Hawaii, Canada, Portugal, Southern France, Republic of Sakha (Yakutia) in Russia 
and the states of Victoria and Tasmania in Australia.
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Extended Data Fig. 2 | Frequency distribution of lightning fires in the gridded 
reference data and model predictions. Both the fraction of lightning fires (a) 
as well as the fraction of burned area attributed to lightning fires (b) show a clear 
bimodal distribution in the reference data. Most grid cells in the reference data 
show either a lightning or human-dominated fire regime. When using regression 
objectives in the XGBoost model, such as the logistic regression objective 

used in this study, this specific bimodal distribution cannot be reproduced. To 
account for this, the predicted continuous range from the logistic regression was 
classified using a threshold into lightning fires (≥ 50%) or anthropogenic fires  
(< 50%) for the 100 model iterations. The frequency distribution from the average 
of these 100 predictions captured the observed frequency distribution in the 
reference data much better.
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Extended Data Fig. 3 | Feature importance and the effect of the individual 
features on the model output. The summary plots for the SHapley Additive 
exPlanations (SHAP) analysis derived from the XGBoost models predicting (a) 
percentage of lightning fires and (b) the percentage of burned area attributed to 
lightning. A positive SHAP value indicates a positive impact on the model output 
(more lightning fires) while a negative SHAP value indicates a negative impact on 
the model output (more anthropogenic fires). The mean SHAP value indicates the 

feature importance, with a high SHAP value indicating a relatively large impact on 
the model output and a low value a relatively small impact on the model output. 
With increasing fraction of low impact land (c), increasing seasonal correlation 
between lightning and burned area (d) and increasing seasonal correlation 
between fire weather and burned area (e) the models predict a relatively higher 
fraction of lightning fires and burned area from lightning.
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Extended Data Fig. 4 | Statistical robustness of the model routine using 
different feature combinations. The model R2 (a), area under the receiver 
operating characteristic (ROC) curve (b) and root mean squared error (RMSE, 
c) derived from the internal model validation using 100 XGBoost training and 
validation iterations with different feature combinations predicting the fraction 
of burned area or fire count attributed to lightning. LI = low impact land, SCL 
= seasonal correlation between lightning and burned area, SCFW = seasonal 
correlation between fire weather and burned area. The logistic regression 
objective in XGBoost predicts a range (0 to 1) of values which were used to 

validate the continuous values of lightning attribution, obtaining the R2 and 
RMSE. After applying a threshold at 0.5 to the continuous range, we also assessed 
the binary values and obtain the area under the ROC curve. The black asterisks 
show the mean. The black line within each box denotes the median, the limits of 
the box represent the 25th (Q1) and 75th (Q3) percentiles and the lines extending 
above and below denote Q1 and Q3 minus or plus 1.5 times the interquartile 
range (Q3 - Q1), respectively. The sample size (n) for each variable combination is 
exactly 100.
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Extended Data Fig. 5 | Field-measured carbon combustion in extratropical intact forest landscapes. The carbon combustion field measurements were retrieved 
from the dataset of van Wees et al.20 and only include locations within extratropical intact forests.
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