Abstract
The Atlantic meridional overturning circulation (AMOC) exerts a major control on the global distribution of heat, dissolved oxygen and carbon in the ocean. Yet the timing and cause of the inception of this system and its evolution since the start of the Cenozoic Era 65 million years ago (Ma) remain highly uncertain. Here we present records of microbial source indicators based on glycerol dialkyl glycerol tetraether distributions from the Cenozoic Northwest Atlantic Ocean (~43‒18 Ma) and use them to infer changes in AMOC-driven deep-ocean oxygenation. At this location, oxygenation is strongly controlled by southwestward Deep Western Boundary Current transport of newly formed deep waters that feed AMOC. Our Eocene data show short-term high-amplitude variability and an overall decrease in oxygenation of AMOC-feed waters culminating in especially poor ventilation between ~36.5 and ~34 Ma. AMOC-feed waters became better oxygenated upon initiation of Antarctic glaciation at the Eocene/Oligocene transition, ~34 Ma, and were consistently well ventilated from ~30 Ma. Our findings indicate a close association between the inception of Antarctic glaciation and AMOC and suggest that both vertical mixing and wind-driven upwelling in the Southern Ocean were key to fully establishing AMOC as an agent of deep-ocean ventilation.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
We declare that the new data that support the findings of this study are available in Supplementary Table 1. All new data associated with the paper can also be accessed at https://doi.org/10.6084/m9.figshare.21922107.
References
Kuhlbrodt, T. et al. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys. 45, RG2001 (2007).
Hohbein, M. W., Sexton, P. F. & Cartwright, J. A. Onset of North Atlantic Deep Water production coincident with inception of the Cenozoic global cooling trend. Geology 40, 255–258 (2012).
Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24, PA4216 (2009).
Borrelli, C., Cramer, B. S. & Katz, M. E. Bipolar Atlantic deepwater circulation in the middle–late Eocene: effects of Southern Ocean gateway openings. Paleoceanography 29, 308–327 (2014).
Abelson, M. & Erez, J. The onset of modern-like Atlantic meridional overturning circulation at the Eocene–Oligocene transition: evidence, causes, and possible implications for global cooling. Geochem. Geophys. Geosyst. 18, 2177–2199 (2017).
Via, R. K. & Thomas, D. J. Evolution of Atlantic thermohaline circulation: early Oligocene onset of deep-water production in the North Atlantic. Geology 34, 441–444 (2006).
Goldner, A., Herold, N. & Huber, M. Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition. Nature 511, 574–577 (2014).
Elsworth, G., Galbraith, E., Halverson, G. & Yang, S. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation. Nat. Geosci. 10, 213–216 (2017).
Coxall, H. K. et al. Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation. Nat. Geosci. 11, 190–196 (2018).
Livermore, R., Hillenbrand, C.-D., Meredith, M. & Eagles, G. Drake Passage and Cenozoic climate: an open and shut case? Geochem. Geophys. Geosyst. 8, Q01005 (2007).
Sijp, W. P., England, M. H. & Huber, M. Effect of the deepening of the Tasman Gateway on the global ocean. Paleoceanography 26, PA4207 (2011).
Scher, H. D. et al. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature 523, 580–583 (2015).
Hill, D. J. et al. Paleogeographic controls on the onset of the Antarctic circumpolar current. Geophys. Res. Lett. 40, 5199–5204 (2013).
Toggweiler, J. R. & Bjornsson, H. Drake Passage and palaeoclimate. J. Quat. Sci. 15, 319–328 (2000).
Katz, M. E. et al. Impact of Antarctic Circumpolar Current development on late Paleogene ocean structure. Science 332, 1076–1079 (2011).
Hutchinson, D. K. et al. Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition. Nat. Commun. 10, 3797 (2019).
Hutchison, D. K. et al. The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons. Clim. Past 17, 269–315 (2021).
Zhang, Y. G. et al. Methane Index: a tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth Planet. Sci. Lett. 307, 525–534 (2011).
Zhang, Y. G., Pagani, M. & Wang, Z. Ring Index: a new strategy to evaluate the integrity of TEX86 paleothermometry. Paleoceanography 31, 220–232 (2016).
Blaga, C. I., Reichart, G.-J., Heiri, O. & Sinninghe Damsté, J. S. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. J. Paleolimnol. 41, 523–540 (2009).
Hopmans, E. C. et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett. 224, 107–116 (2004).
Turich, C. & Freeman, K. H. Archaeal lipids record paleosalinity in hypersaline systems. Org. Geochem. 42, 1147–1157 (2011).
Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002).
Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., van Duin, A. C. T. & Geenevasen, J. A. J. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J. Lipid Res. 43, 1641–1651 (2002).
Kim, J.-H. et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta 74, 4639–4654 (2010).
Ho, S. L. et al. Appraisal of TEX86 and TEX86L thermometries in subpolar and polar regions. Geochim. Cosmochim. Acta 131, 213–226 (2014).
Zhu, C. et al. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea. Environ. Microbiol. 18, 4324–4336 (2016).
Rattanasriampaipong, R. et al. Archaeal lipids trace ecology and evolution of marine ammonia-oxidizing archaea. Proc. Natl Acad. Sci. USA 119, e2123193119 (2022).
Pancost, R. D. et al. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl. Environ. Microbiol. 66, 1126–1132 (2000).
Blumenberg, M., Seifert, R., Reitner, J., Pape, T. & Michaelis, W. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc. Natl Acad. Sci. USA 101, 11111–11116 (2004).
Norris, R. D. et al. Site U1404. In Proc. IODP Vol. 342 (eds Norris, R. D. et al.) (IODP, 2014); https://doi.org/10.2204/iodp.proc.342.105.2014
Liu, Z. et al. Transient temperature asymmetry between hemispheres in the Palaeogene Atlantic Ocean. Nat. Geosci. 11, 656–660 (2018).
Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010).
Tjiputra, J. F. et al. Mechanisms and early detections of multidecadal oxygen changes in the interior subpolar North Atlantic. Geophys. Res. Lett. 45, 4218–4229 (2018).
Elvert, M., Suess, E., Greinert, J. & Whiticar, M. J. Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Org. Geochem. 31, 1175–1187 (2000).
Skarke, A., Ruppel, C., Kodis, M., Brothers, D. & Lobecker, E. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nat. Geosci. 7, 657–661 (2014).
Ferré, B. et al. Reduced methane seepage from Arctic sediments during cold bottom-water conditions. Nat. Geosci. 13, 144–148 (2020).
Watanabe, Y., Nakai, S., Hiruta, A., Matsumoto, R. & Yoshida, K. U–Th dating of carbonate nodules from methane seeps off Joetsu, Eastern Margin of Japan Sea. Earth Planet. Sci. Lett. 272, 89–96 (2008).
Kim, B. & Zhang, Y. G. Methane hydrate dissociation across the Oligocene–Miocene boundary. Nat. Geosci. 15, 203–209 (2022).
Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6, eaaz1346 (2020).
McKinley, C. C., Thomas, D. J., LeVay, L. J. & Rolewicz, Z. Nd isotopic structure of the Pacific Ocean 40–10 Ma, and evidence for the reorganization of deep North Pacific Ocean circulation between 36 and 25 Ma. Earth Planet. Sci. Lett. 521, 139–149 (2019).
Wright, J. D. & Miller, K. G. Control of North Atlantic Deep Water Circulation by the Greenland–Scotland Ridge. Paleoceanography 11, 157–170 (1996).
Parnell-Turner, R. et al. A continuous 55-million-year record of transient mantle plume activity beneath Iceland. Nat. Geosci. 7, 914–919 (2014).
Hegewald, A. & Jokat, W. Relative sea level variations in the Chukchi region—Arctic Ocean—since the late Eocene. Geophys. Res. Lett. 40, 803–807 (2013).
Jakobsson, M. et al. The early Miocene onset of a ventilated circulation regime in the Arctic Ocean. Nature 447, 986–990 (2007).
Stärz, M., Jokat, W., Knorr, G. & Lohmann, G. Threshold in North Atlantic–Arctic Ocean circulation controlled by the subsidence of the Greenland–Scotland Ridge. Nat. Commun. 8, 15681 (2017).
Sexton, P. F. et al. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature 471, 349–352 (2011).
Thomas, N. C., Bradbury, H. J. & Hodell, D. A. Changes in North Atlantic deep-water oxygenation across the Middle Pleistocene Transition. Science 377, 654–659 (2022).
Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).
Toumoulin, A. et al. Quantifying the effect of the Drake Passage opening on the Eocene Ocean. Paleoceanogr. Paleoclimatol. 35, e2020PA003889 (2020).
Garcia, H. E. et al. World Ocean Atlas 2018 Vol. 3 (NOAA, 2019); https://www.ncei.noaa.gov/sites/default/files/2022-06/woa18_vol3.pdf
Wang, M. et al. Late Miocene–Pliocene Asian summer monsoon variability linked to both tropical Pacific temperature and Walker Circulation. Earth Planet. Sci. Lett. 561, 116823 (2021).
Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V. & Sinninghe Damsté, J. S. Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal. Chem. 79, 2940–2944 (2007).
Wang, H. et al. Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai–Tibetan Plateau. Org. Geochem. 54, 69–77 (2013).
Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54, 19–61 (2013).
Wang, H. et al. Water depth affecting thaumarchaeol production in Lake Qinghai, northeastern Qinghai–Tibetan Plateau: implications for paleo lake levels and paleoclimate. Chem. Geol. 368, 76–84 (2014).
Peterse, F. et al. Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). Org. Geochem. 40, 692–699 (2009).
Weijers, J. W. H., Schefuß, E., Kim, J.-H., Sinninghe Damsté, J. S. & Schouten, S. Constraints on the sources of branched tetraether membrane lipids in distal marine sediments. Org. Geochem. 72, 14–22 (2014).
Liu, X.-L., Zhu, C., Wakeham, S. G. & Hinrichs, K.-U. In situ production of branched glycerol dialkyl glycerol tetraethers in anoxic marine water columns. Mar. Chem. 166, 1–8 (2014).
Xie, S., Liu, X.-L., Schubotz, F., Wakeham, S. G. & Hinrichs, K.-U. Distribution of glycerol ether lipids in the oxygen minimum zone of the eastern tropical North Pacific Ocean. Org. Geochem. 71, 60–71 (2014).
Xiao, W. et al. Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs. Biogeosciences 13, 5883–5894 (2016).
Taylor, K. W. R., Huber, M., Hollis, C. J., Hernandez-Sanchez, M. T. & Pancost, R. D. Re-evaluating modern and Palaeogene GDGT distributions: implications for SST reconstructions. Glob. Planet. Change 108, 158–174 (2013).
Pitcher, A. et al. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. ISME J. 5, 1896–1904 (2011).
Schouten, S. et al. Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone: I. Selective preservation and degradation in the water column and consequences for the TEX86. Geochim. Cosmochim. Acta 98, 228–243 (2012).
Wakeham, S. G., Lewis, C. M., Hopmans, E. C., Schouten, S. & Sinninghe Damsté, J. S. Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochim. Cosmochim. Acta 67, 1359–1374 (2003).
Wakeham, S. G., Hopmans, E. C., Schouten, S. & Sinninghe Damsté, J. S. Archaeal lipids and anaerobic oxidation of methane in euxinic water columns: a comparative study of the Black Sea and Cariaco Basin. Chem. Geol. 205, 427–442 (2004).
Wakeham, S. G. et al. Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Org. Geochem. 38, 2070–2097 (2007).
Weber, Y. et al. Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes. Proc. Natl Acad. Sci. USA 115, 10926–10931 (2018).
Wu, J. et al. Variations in dissolved O2 in a Chinese lake drive changes in microbial communities and impact sedimentary GDGT distributions. Chem. Geol. 579, 120348 (2021).
Schouten, S., Rijpstra, W. I. C., Durisch-Kaiser, E., Schubert, C. J. & Sinninghe Damsté, J. S. Distribution of glycerol dialkyl glycerol tetraether lipids in the water column of Lake Tanganyika. Org. Geochem. 53, 34–37 (2012).
Baxter, A. J. et al. Seasonal and multi-annual variation in the abundance of isoprenoid GDGT membrane lipids and their producers in the water column of a meromictic equatorial crater lake (Lake Chala, East Africa). Quat. Sci. Rev. 273, 107263 (2021).
Sinninghe Damsté, J. S., Weber, Y., Zopfi, J., Lehmann, M. F. & Niemann, H. Distributions and sources of isoprenoidal GDGTs in Lake Lugano and other central European (peri-)alpine lakes: lessons for their use as paleotemperature proxies. Quat. Sci. Rev. 277, 107352 (2022).
Summons, R. E., Franzmann, P. D. & Nichols, P. D. Carbon isotopic fractionation associated with methylotrophic methanogenesis. Org. Geochem. 28, 465–476 (1998).
Inglis, G. N. et al. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography 30, 1000–1020 (2015).
Śliwińska, K. K., Mets, A. & Schouten, S. Data report: distribution and sources of tetraether lipids in Oligocene deposits from the western North Atlantic, IODP Sites U1406 and U1411. In Proc. Integrated Ocean Drilling Program Vol. 342 (eds Norris, R. D. et al.) (IODP, 2017); https://doi.org/10.2204/iodp.proc.342.205.2017
Guitián, J. et al. Midlatitude temperature variations in the Oligocene to early Miocene. Paleoceanogr. Paleoclimatol. 34, 1328–1343 (2019).
Śliwińska, K. K. et al. Sea surface temperature evolution of the North Atlantic Ocean across the Eocene–Oligocene Transition. Clim. Past 19, 123–140 (2023).
Diester-Haass, L. & Zahn, R. Eocene–Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology 24, 163–166 (1996).
Pusz, A. E., Thunell, R. C. & Miller, K. G. Deep water temperature, carbonate ion, and ice volume changes across the Eocene–Oligocene climate transition. Paleoceanography 26, PA2205 (2011).
Scher, H. D. & Martin, E. E. Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes. Earth Planet. Sci. Lett. 228, 391–405 (2004).
Scher, H. D. & Martin, E. E. Oligocene deep water export from the North Atlantic and the development of the Antarctic Circumpolar Current examined with neodymium isotopes. Paleoceanography 23, PA1205 (2008).
Acknowledgements
This research used samples provided by the Integrated Ocean Drilling Program (IODP), which is sponsored by the US National Science Foundation and participating countries under management of Joint Oceanographic Institutions, Inc. We thank the scientists and supporting staff of IODP Expedition 342, IODP for providing samples for this study, IODP China office for additional support and Y. Cao and J. Hu for technical support. This research was supported by Chinese Academy of Sciences (XDB40000000) (to W.L. and Z.L.), Hong Kong Research Grant Council grant 17305019 and 17303614 (to Z.L.), UK Natural Environment Research Council (NERC) grant NE/L007452/1 (to S.M.B), NERC grant NE/K014137/1 (to P.A.W.), a Royal Society Wolfson award (to P.A.W.), the National Natural Science Foundation of China 42122021 (to H.W.) and 42273059 (to Y.Z.) and the Youth Innovation Promotion Association CAS 2019403 (to H.W.).
Author information
Authors and Affiliations
Contributions
P.A.W. and Z.L. participated in IODP Expedition 342 in seagoing capacities. Z.L., W.L., S.M.B. and P.A.W. conceived the idea of using GDGT source indicators to infer early AMOC history. H.W., W.L., H.L., Y.Z., Y.L. and Y.H. performed data analysis. Z.L. and P.A.W. led the writing of the paper with intellectual contributions from all co-authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks Ronnakrit Rattanasriampaipong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Structures of isoprenoidal and branched glycerol ether lipids.
Left: archaeol and isoprenoid GDGTs. Right: branched GDGTs. Grey numbers indicate values of [M + H]+ ions for those compounds.
Extended Data Fig. 2 GDGT distribution patterns revealed in modern core top and suspended particulate matter studies.
a, MI (methane index), b, GDGT-0/cren, and c, ΔRI (ring index) values plotted against the associated TEX86 values in modern ocean surface sediment (Sedi) and suspended particulate matter (SPM). d, ACE (the relative abundance of archaeol to caldarchaeol) against ocean water depth. The highlighted bar in a indicates the range of TEX86 values after ~30 Ma at U1404 (Extended Data Fig. 3), when the GDGTs were mainly produced by the normal marine Thaumarchaeota, and the highlighted bar in d indicates ACE range in modern oxic waters. Data sources25,26,27,28. See Methods for definitions of GDGT source indicators. NP, North Pacific; BS: Black Sea (water depth > 1000 m in a‒c).
Extended Data Fig. 3 Additional GDGT records from U1404 in the North Atlantic.
a, Global benthic δ18O record3. b, TEX86. c, ΔRI (ring index). d, ACE (the relative abundance of archaeol to caldarchaeol, in log scale). e, GDGT-2/GDGT-3 (in log scale). f, IIIa/IIa (in log scale). g, MI (methane index). See Methods for definitions of GDGT source indicators and compound names. Interval of elevated ΔRI, ACE, and MI values (plotted inversely) at ~36.5‒34 Ma highlighted. Particularly high GDGT-2/GDGT-3 (>5)62 and IIIa/IIa (>0.92)61 over the late Eocene indicate dominant deep-water contributions with little terrestrial influence. The Eocene-Oligocene boundary (EOB, 33.9 Ma) indicated for reference.
Extended Data Fig. 4 Mid-Eocene to early Miocene productivity records at U1404 in the North Atlantic.
a, Global benthic δ18O record3. b, Alkenone content32 (C37). c, Isoprenoid and branched GDGT content (isoGDGTs and brGDGTs). d, Total organic carbon (TOC) and total nitrogen (TN)31. e, Shipboard31 and lab (circles)32 measurements of CaCO3 percentages. The highlighted interval at ~36.5‒34 Ma and the indicated EOB are the same as Extended Data Fig. 3.
Supplementary information
Supplementary Table 1
GDGT fractional abundance and indices and carbon isotopic values of the alkyl moieties of GDGTs and carbonates from IODP Site U1404, North Atlantic.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, H., Liu, W., Lu, H. et al. Oxygenated deep waters fed early Atlantic overturning circulation upon Antarctic glaciation. Nat. Geosci. 16, 1014–1019 (2023). https://doi.org/10.1038/s41561-023-01292-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-023-01292-2