Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxygenated deep waters fed early Atlantic overturning circulation upon Antarctic glaciation

Abstract

The Atlantic meridional overturning circulation (AMOC) exerts a major control on the global distribution of heat, dissolved oxygen and carbon in the ocean. Yet the timing and cause of the inception of this system and its evolution since the start of the Cenozoic Era 65 million years ago (Ma) remain highly uncertain. Here we present records of microbial source indicators based on glycerol dialkyl glycerol tetraether distributions from the Cenozoic Northwest Atlantic Ocean (~43‒18 Ma) and use them to infer changes in AMOC-driven deep-ocean oxygenation. At this location, oxygenation is strongly controlled by southwestward Deep Western Boundary Current transport of newly formed deep waters that feed AMOC. Our Eocene data show short-term high-amplitude variability and an overall decrease in oxygenation of AMOC-feed waters culminating in especially poor ventilation between ~36.5 and ~34 Ma. AMOC-feed waters became better oxygenated upon initiation of Antarctic glaciation at the Eocene/Oligocene transition, ~34 Ma, and were consistently well ventilated from ~30 Ma. Our findings indicate a close association between the inception of Antarctic glaciation and AMOC and suggest that both vertical mixing and wind-driven upwelling in the Southern Ocean were key to fully establishing AMOC as an agent of deep-ocean ventilation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Site locations and modern dissolved oxygen level in the Atlantic Basin.
Fig. 2: Mid-Eocene to early Miocene GDGT records from U1404 in the North Atlantic.
Fig. 3: Detailed view of changes in microbial community and association with surface conditions at U1404.
Fig. 4: Representative early AMOC records.

Similar content being viewed by others

Data availability

We declare that the new data that support the findings of this study are available in Supplementary Table 1. All new data associated with the paper can also be accessed at https://doi.org/10.6084/m9.figshare.21922107.

References

  1. Kuhlbrodt, T. et al. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys. 45, RG2001 (2007).

    Article  Google Scholar 

  2. Hohbein, M. W., Sexton, P. F. & Cartwright, J. A. Onset of North Atlantic Deep Water production coincident with inception of the Cenozoic global cooling trend. Geology 40, 255–258 (2012).

    Article  Google Scholar 

  3. Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24, PA4216 (2009).

    Article  Google Scholar 

  4. Borrelli, C., Cramer, B. S. & Katz, M. E. Bipolar Atlantic deepwater circulation in the middle–late Eocene: effects of Southern Ocean gateway openings. Paleoceanography 29, 308–327 (2014).

    Article  Google Scholar 

  5. Abelson, M. & Erez, J. The onset of modern-like Atlantic meridional overturning circulation at the Eocene–Oligocene transition: evidence, causes, and possible implications for global cooling. Geochem. Geophys. Geosyst. 18, 2177–2199 (2017).

    Article  Google Scholar 

  6. Via, R. K. & Thomas, D. J. Evolution of Atlantic thermohaline circulation: early Oligocene onset of deep-water production in the North Atlantic. Geology 34, 441–444 (2006).

    Article  Google Scholar 

  7. Goldner, A., Herold, N. & Huber, M. Antarctic glaciation caused ocean circulation changes at the Eocene–Oligocene transition. Nature 511, 574–577 (2014).

    Article  Google Scholar 

  8. Elsworth, G., Galbraith, E., Halverson, G. & Yang, S. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation. Nat. Geosci. 10, 213–216 (2017).

    Article  Google Scholar 

  9. Coxall, H. K. et al. Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation. Nat. Geosci. 11, 190–196 (2018).

    Article  Google Scholar 

  10. Livermore, R., Hillenbrand, C.-D., Meredith, M. & Eagles, G. Drake Passage and Cenozoic climate: an open and shut case? Geochem. Geophys. Geosyst. 8, Q01005 (2007).

    Article  Google Scholar 

  11. Sijp, W. P., England, M. H. & Huber, M. Effect of the deepening of the Tasman Gateway on the global ocean. Paleoceanography 26, PA4207 (2011).

    Article  Google Scholar 

  12. Scher, H. D. et al. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature 523, 580–583 (2015).

    Article  Google Scholar 

  13. Hill, D. J. et al. Paleogeographic controls on the onset of the Antarctic circumpolar current. Geophys. Res. Lett. 40, 5199–5204 (2013).

    Article  Google Scholar 

  14. Toggweiler, J. R. & Bjornsson, H. Drake Passage and palaeoclimate. J. Quat. Sci. 15, 319–328 (2000).

    Article  Google Scholar 

  15. Katz, M. E. et al. Impact of Antarctic Circumpolar Current development on late Paleogene ocean structure. Science 332, 1076–1079 (2011).

    Article  Google Scholar 

  16. Hutchinson, D. K. et al. Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition. Nat. Commun. 10, 3797 (2019).

    Article  Google Scholar 

  17. Hutchison, D. K. et al. The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons. Clim. Past 17, 269–315 (2021).

    Article  Google Scholar 

  18. Zhang, Y. G. et al. Methane Index: a tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth Planet. Sci. Lett. 307, 525–534 (2011).

    Article  Google Scholar 

  19. Zhang, Y. G., Pagani, M. & Wang, Z. Ring Index: a new strategy to evaluate the integrity of TEX86 paleothermometry. Paleoceanography 31, 220–232 (2016).

    Article  Google Scholar 

  20. Blaga, C. I., Reichart, G.-J., Heiri, O. & Sinninghe Damsté, J. S. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. J. Paleolimnol. 41, 523–540 (2009).

    Article  Google Scholar 

  21. Hopmans, E. C. et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett. 224, 107–116 (2004).

    Article  Google Scholar 

  22. Turich, C. & Freeman, K. H. Archaeal lipids record paleosalinity in hypersaline systems. Org. Geochem. 42, 1147–1157 (2011).

    Google Scholar 

  23. Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002).

    Article  Google Scholar 

  24. Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., van Duin, A. C. T. & Geenevasen, J. A. J. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J. Lipid Res. 43, 1641–1651 (2002).

    Article  Google Scholar 

  25. Kim, J.-H. et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta 74, 4639–4654 (2010).

    Article  Google Scholar 

  26. Ho, S. L. et al. Appraisal of TEX86 and TEX86L thermometries in subpolar and polar regions. Geochim. Cosmochim. Acta 131, 213–226 (2014).

    Article  Google Scholar 

  27. Zhu, C. et al. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea. Environ. Microbiol. 18, 4324–4336 (2016).

    Article  Google Scholar 

  28. Rattanasriampaipong, R. et al. Archaeal lipids trace ecology and evolution of marine ammonia-oxidizing archaea. Proc. Natl Acad. Sci. USA 119, e2123193119 (2022).

    Article  Google Scholar 

  29. Pancost, R. D. et al. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl. Environ. Microbiol. 66, 1126–1132 (2000).

    Article  Google Scholar 

  30. Blumenberg, M., Seifert, R., Reitner, J., Pape, T. & Michaelis, W. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc. Natl Acad. Sci. USA 101, 11111–11116 (2004).

    Article  Google Scholar 

  31. Norris, R. D. et al. Site U1404. In Proc. IODP Vol. 342 (eds Norris, R. D. et al.) (IODP, 2014); https://doi.org/10.2204/iodp.proc.342.105.2014

  32. Liu, Z. et al. Transient temperature asymmetry between hemispheres in the Palaeogene Atlantic Ocean. Nat. Geosci. 11, 656–660 (2018).

    Article  Google Scholar 

  33. Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010).

    Article  Google Scholar 

  34. Tjiputra, J. F. et al. Mechanisms and early detections of multidecadal oxygen changes in the interior subpolar North Atlantic. Geophys. Res. Lett. 45, 4218–4229 (2018).

    Article  Google Scholar 

  35. Elvert, M., Suess, E., Greinert, J. & Whiticar, M. J. Archaea mediating anaerobic methane oxidation in deep-sea sediments at cold seeps of the eastern Aleutian subduction zone. Org. Geochem. 31, 1175–1187 (2000).

    Article  Google Scholar 

  36. Skarke, A., Ruppel, C., Kodis, M., Brothers, D. & Lobecker, E. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nat. Geosci. 7, 657–661 (2014).

    Article  Google Scholar 

  37. Ferré, B. et al. Reduced methane seepage from Arctic sediments during cold bottom-water conditions. Nat. Geosci. 13, 144–148 (2020).

    Article  Google Scholar 

  38. Watanabe, Y., Nakai, S., Hiruta, A., Matsumoto, R. & Yoshida, K. U–Th dating of carbonate nodules from methane seeps off Joetsu, Eastern Margin of Japan Sea. Earth Planet. Sci. Lett. 272, 89–96 (2008).

    Article  Google Scholar 

  39. Kim, B. & Zhang, Y. G. Methane hydrate dissociation across the Oligocene–Miocene boundary. Nat. Geosci. 15, 203–209 (2022).

    Article  Google Scholar 

  40. Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6, eaaz1346 (2020).

    Article  Google Scholar 

  41. McKinley, C. C., Thomas, D. J., LeVay, L. J. & Rolewicz, Z. Nd isotopic structure of the Pacific Ocean 40–10 Ma, and evidence for the reorganization of deep North Pacific Ocean circulation between 36 and 25 Ma. Earth Planet. Sci. Lett. 521, 139–149 (2019).

    Article  Google Scholar 

  42. Wright, J. D. & Miller, K. G. Control of North Atlantic Deep Water Circulation by the Greenland–Scotland Ridge. Paleoceanography 11, 157–170 (1996).

    Article  Google Scholar 

  43. Parnell-Turner, R. et al. A continuous 55-million-year record of transient mantle plume activity beneath Iceland. Nat. Geosci. 7, 914–919 (2014).

    Article  Google Scholar 

  44. Hegewald, A. & Jokat, W. Relative sea level variations in the Chukchi region—Arctic Ocean—since the late Eocene. Geophys. Res. Lett. 40, 803–807 (2013).

    Article  Google Scholar 

  45. Jakobsson, M. et al. The early Miocene onset of a ventilated circulation regime in the Arctic Ocean. Nature 447, 986–990 (2007).

    Article  Google Scholar 

  46. Stärz, M., Jokat, W., Knorr, G. & Lohmann, G. Threshold in North Atlantic–Arctic Ocean circulation controlled by the subsidence of the Greenland–Scotland Ridge. Nat. Commun. 8, 15681 (2017).

    Article  Google Scholar 

  47. Sexton, P. F. et al. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature 471, 349–352 (2011).

    Article  Google Scholar 

  48. Thomas, N. C., Bradbury, H. J. & Hodell, D. A. Changes in North Atlantic deep-water oxygenation across the Middle Pleistocene Transition. Science 377, 654–659 (2022).

    Article  Google Scholar 

  49. Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).

    Article  Google Scholar 

  50. Toumoulin, A. et al. Quantifying the effect of the Drake Passage opening on the Eocene Ocean. Paleoceanogr. Paleoclimatol. 35, e2020PA003889 (2020).

    Article  Google Scholar 

  51. Garcia, H. E. et al. World Ocean Atlas 2018 Vol. 3 (NOAA, 2019); https://www.ncei.noaa.gov/sites/default/files/2022-06/woa18_vol3.pdf

  52. Wang, M. et al. Late Miocene–Pliocene Asian summer monsoon variability linked to both tropical Pacific temperature and Walker Circulation. Earth Planet. Sci. Lett. 561, 116823 (2021).

    Article  Google Scholar 

  53. Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V. & Sinninghe Damsté, J. S. Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal. Chem. 79, 2940–2944 (2007).

    Article  Google Scholar 

  54. Wang, H. et al. Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai–Tibetan Plateau. Org. Geochem. 54, 69–77 (2013).

    Article  Google Scholar 

  55. Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54, 19–61 (2013).

    Article  Google Scholar 

  56. Wang, H. et al. Water depth affecting thaumarchaeol production in Lake Qinghai, northeastern Qinghai–Tibetan Plateau: implications for paleo lake levels and paleoclimate. Chem. Geol. 368, 76–84 (2014).

    Article  Google Scholar 

  57. Peterse, F. et al. Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). Org. Geochem. 40, 692–699 (2009).

    Article  Google Scholar 

  58. Weijers, J. W. H., Schefuß, E., Kim, J.-H., Sinninghe Damsté, J. S. & Schouten, S. Constraints on the sources of branched tetraether membrane lipids in distal marine sediments. Org. Geochem. 72, 14–22 (2014).

    Article  Google Scholar 

  59. Liu, X.-L., Zhu, C., Wakeham, S. G. & Hinrichs, K.-U. In situ production of branched glycerol dialkyl glycerol tetraethers in anoxic marine water columns. Mar. Chem. 166, 1–8 (2014).

    Article  Google Scholar 

  60. Xie, S., Liu, X.-L., Schubotz, F., Wakeham, S. G. & Hinrichs, K.-U. Distribution of glycerol ether lipids in the oxygen minimum zone of the eastern tropical North Pacific Ocean. Org. Geochem. 71, 60–71 (2014).

    Article  Google Scholar 

  61. Xiao, W. et al. Ubiquitous production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine environments: a new source indicator for brGDGTs. Biogeosciences 13, 5883–5894 (2016).

    Article  Google Scholar 

  62. Taylor, K. W. R., Huber, M., Hollis, C. J., Hernandez-Sanchez, M. T. & Pancost, R. D. Re-evaluating modern and Palaeogene GDGT distributions: implications for SST reconstructions. Glob. Planet. Change 108, 158–174 (2013).

    Article  Google Scholar 

  63. Pitcher, A. et al. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. ISME J. 5, 1896–1904 (2011).

    Article  Google Scholar 

  64. Schouten, S. et al. Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone: I. Selective preservation and degradation in the water column and consequences for the TEX86. Geochim. Cosmochim. Acta 98, 228–243 (2012).

    Article  Google Scholar 

  65. Wakeham, S. G., Lewis, C. M., Hopmans, E. C., Schouten, S. & Sinninghe Damsté, J. S. Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochim. Cosmochim. Acta 67, 1359–1374 (2003).

    Article  Google Scholar 

  66. Wakeham, S. G., Hopmans, E. C., Schouten, S. & Sinninghe Damsté, J. S. Archaeal lipids and anaerobic oxidation of methane in euxinic water columns: a comparative study of the Black Sea and Cariaco Basin. Chem. Geol. 205, 427–442 (2004).

    Article  Google Scholar 

  67. Wakeham, S. G. et al. Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Org. Geochem. 38, 2070–2097 (2007).

    Article  Google Scholar 

  68. Weber, Y. et al. Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes. Proc. Natl Acad. Sci. USA 115, 10926–10931 (2018).

    Article  Google Scholar 

  69. Wu, J. et al. Variations in dissolved O2 in a Chinese lake drive changes in microbial communities and impact sedimentary GDGT distributions. Chem. Geol. 579, 120348 (2021).

    Article  Google Scholar 

  70. Schouten, S., Rijpstra, W. I. C., Durisch-Kaiser, E., Schubert, C. J. & Sinninghe Damsté, J. S. Distribution of glycerol dialkyl glycerol tetraether lipids in the water column of Lake Tanganyika. Org. Geochem. 53, 34–37 (2012).

    Article  Google Scholar 

  71. Baxter, A. J. et al. Seasonal and multi-annual variation in the abundance of isoprenoid GDGT membrane lipids and their producers in the water column of a meromictic equatorial crater lake (Lake Chala, East Africa). Quat. Sci. Rev. 273, 107263 (2021).

    Article  Google Scholar 

  72. Sinninghe Damsté, J. S., Weber, Y., Zopfi, J., Lehmann, M. F. & Niemann, H. Distributions and sources of isoprenoidal GDGTs in Lake Lugano and other central European (peri-)alpine lakes: lessons for their use as paleotemperature proxies. Quat. Sci. Rev. 277, 107352 (2022).

    Article  Google Scholar 

  73. Summons, R. E., Franzmann, P. D. & Nichols, P. D. Carbon isotopic fractionation associated with methylotrophic methanogenesis. Org. Geochem. 28, 465–476 (1998).

    Article  Google Scholar 

  74. Inglis, G. N. et al. Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography 30, 1000–1020 (2015).

    Article  Google Scholar 

  75. Śliwińska, K. K., Mets, A. & Schouten, S. Data report: distribution and sources of tetraether lipids in Oligocene deposits from the western North Atlantic, IODP Sites U1406 and U1411. In Proc. Integrated Ocean Drilling Program Vol. 342 (eds Norris, R. D. et al.) (IODP, 2017); https://doi.org/10.2204/iodp.proc.342.205.2017

  76. Guitián, J. et al. Midlatitude temperature variations in the Oligocene to early Miocene. Paleoceanogr. Paleoclimatol. 34, 1328–1343 (2019).

    Article  Google Scholar 

  77. Śliwińska, K. K. et al. Sea surface temperature evolution of the North Atlantic Ocean across the Eocene–Oligocene Transition. Clim. Past 19, 123–140 (2023).

    Article  Google Scholar 

  78. Diester-Haass, L. & Zahn, R. Eocene–Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology 24, 163–166 (1996).

    Article  Google Scholar 

  79. Pusz, A. E., Thunell, R. C. & Miller, K. G. Deep water temperature, carbonate ion, and ice volume changes across the Eocene–Oligocene climate transition. Paleoceanography 26, PA2205 (2011).

    Article  Google Scholar 

  80. Scher, H. D. & Martin, E. E. Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes. Earth Planet. Sci. Lett. 228, 391–405 (2004).

    Article  Google Scholar 

  81. Scher, H. D. & Martin, E. E. Oligocene deep water export from the North Atlantic and the development of the Antarctic Circumpolar Current examined with neodymium isotopes. Paleoceanography 23, PA1205 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This research used samples provided by the Integrated Ocean Drilling Program (IODP), which is sponsored by the US National Science Foundation and participating countries under management of Joint Oceanographic Institutions, Inc. We thank the scientists and supporting staff of IODP Expedition 342, IODP for providing samples for this study, IODP China office for additional support and Y. Cao and J. Hu for technical support. This research was supported by Chinese Academy of Sciences (XDB40000000) (to W.L. and Z.L.), Hong Kong Research Grant Council grant 17305019 and 17303614 (to Z.L.), UK Natural Environment Research Council (NERC) grant NE/L007452/1 (to S.M.B), NERC grant NE/K014137/1 (to P.A.W.), a Royal Society Wolfson award (to P.A.W.), the National Natural Science Foundation of China 42122021 (to H.W.) and 42273059 (to Y.Z.) and the Youth Innovation Promotion Association CAS 2019403 (to H.W.).

Author information

Authors and Affiliations

Authors

Contributions

P.A.W. and Z.L. participated in IODP Expedition 342 in seagoing capacities. Z.L., W.L., S.M.B. and P.A.W. conceived the idea of using GDGT source indicators to infer early AMOC history. H.W., W.L., H.L., Y.Z., Y.L. and Y.H. performed data analysis. Z.L. and P.A.W. led the writing of the paper with intellectual contributions from all co-authors.

Corresponding authors

Correspondence to Paul A. Wilson or Zhonghui Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Ronnakrit Rattanasriampaipong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Structures of isoprenoidal and branched glycerol ether lipids.

Left: archaeol and isoprenoid GDGTs. Right: branched GDGTs. Grey numbers indicate values of [M + H]+ ions for those compounds.

Extended Data Fig. 2 GDGT distribution patterns revealed in modern core top and suspended particulate matter studies.

a, MI (methane index), b, GDGT-0/cren, and c, ΔRI (ring index) values plotted against the associated TEX86 values in modern ocean surface sediment (Sedi) and suspended particulate matter (SPM). d, ACE (the relative abundance of archaeol to caldarchaeol) against ocean water depth. The highlighted bar in a indicates the range of TEX86 values after ~30 Ma at U1404 (Extended Data Fig. 3), when the GDGTs were mainly produced by the normal marine Thaumarchaeota, and the highlighted bar in d indicates ACE range in modern oxic waters. Data sources25,26,27,28. See Methods for definitions of GDGT source indicators. NP, North Pacific; BS: Black Sea (water depth > 1000 m in a‒c).

Extended Data Fig. 3 Additional GDGT records from U1404 in the North Atlantic.

a, Global benthic δ18O record3. b, TEX86. c, ΔRI (ring index). d, ACE (the relative abundance of archaeol to caldarchaeol, in log scale). e, GDGT-2/GDGT-3 (in log scale). f, IIIa/IIa (in log scale). g, MI (methane index). See Methods for definitions of GDGT source indicators and compound names. Interval of elevated ΔRI, ACE, and MI values (plotted inversely) at ~36.5‒34 Ma highlighted. Particularly high GDGT-2/GDGT-3 (>5)62 and IIIa/IIa (>0.92)61 over the late Eocene indicate dominant deep-water contributions with little terrestrial influence. The Eocene-Oligocene boundary (EOB, 33.9 Ma) indicated for reference.

Extended Data Fig. 4 Mid-Eocene to early Miocene productivity records at U1404 in the North Atlantic.

a, Global benthic δ18O record3. b, Alkenone content32 (C37). c, Isoprenoid and branched GDGT content (isoGDGTs and brGDGTs). d, Total organic carbon (TOC) and total nitrogen (TN)31. e, Shipboard31 and lab (circles)32 measurements of CaCO3 percentages. The highlighted interval at ~36.5‒34 Ma and the indicated EOB are the same as Extended Data Fig. 3.

Extended Data Fig. 5 Additional GDGT source indicator records from the North Atlantic.

a, ODP 64777, b, ODP 91374, c, IODP U140675,76, d, IODP U141175, and e, IODP U1404 BIT (branched and isoprenoid tetraether index) records. Among the source indicator records, BIT is mostly available. The highlighted interval at ~36.5‒34 Ma and the indicated EOB are the same as Extended Data Fig. 3.

Supplementary information

Supplementary Table 1

GDGT fractional abundance and indices and carbon isotopic values of the alkyl moieties of GDGTs and carbonates from IODP Site U1404, North Atlantic.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, W., Lu, H. et al. Oxygenated deep waters fed early Atlantic overturning circulation upon Antarctic glaciation. Nat. Geosci. 16, 1014–1019 (2023). https://doi.org/10.1038/s41561-023-01292-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01292-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing