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Oxygenation of the Baltoscandian shelf 
linked to Ordovician biodiversification

Anders Lindskog    1,2  , Seth A. Young    2, Chelsie N. Bowman    2, 
Nevin P. Kozik    2, Sean M. Newby2, Mats E. Eriksson1, Johan Pettersson1, 
Emmy Molin1 & Jeremy D. Owens    2

Marine biodiversity increased markedly during the Ordovician Period 
(~487–443 million years ago). Some intervals within the Ordovician 
were associated with unusually rapid and prominent rises in taxonomic 
richness, the reasons for which remain debated. Links between increased 
oxygenation and biodiversification have been proposed, although 
supporting marine oxygen proxy data are limited. Here we present an 
expansive multi-site iodine-to-calcium (I/Ca) record from Lower–Middle 
Ordovician marine carbonates in Baltoscandia that provides a detailed 
account of the spatio-temporal development of oxygen conditions across 
this palaeoshelf. The data document progressive oxygenation of regional 
seafloor environments, with well-oxygenated waters sourced from the 
palaeoequatorward Iapetus Ocean and peak I/Ca values (that is, dissolved 
oxygen concentrations) coinciding with the most pronounced biodiversity 
increases and ecosystem reorganizations during this time interval. This 
occurred while the climate cooled, global sea level dropped and carbonate 
deposits became regionally dominant. The results suggest that ventilation of 
shelves played a critical role in regulating early Palaeozoic marine biodiversity 
via development of ecospace and aerobic–metabolic conditions.

The Ordovician Radiation, or Great Ordovician Biodiversification Event, 
resulted in global changes among marine ecosystems, as biodiversity 
increased and biota refined niche utilization. Marine life successively 
spread into and above the seafloor, throughout the water column, 
and trophic networks evolved1. Palaeontological datasets document 
a long-term rise in biodiversity with repeated bursts during which 
taxonomic richness rose rapidly1–5. The reasons for these pronounced 
increases in biodiversity have been debated, and explanatory scenarios 
commonly involve influences from climate change, oxygenation, tec-
tonics and sea-level fluctuations3,5,6. Temperature proxy data indicate 
that the global climate cooled substantially during the Ordovician, 
and this change may have promoted evolution via more hospitable 
living conditions7–10.

Ambient oxygen levels have had an important role in evolu-
tionary history, as also implied by co-variation between modelled 

(atmospheric) oxygen levels and long-term biodiversity patterns 
throughout the Phanerozoic11–13. It has been postulated that rising 
oxygen concentrations had a fundamental effect on marine biodiver-
sity during the Ordovician14–16, but crude spatio-temporal resolution 
and scarce direct marine redox proxy investigations have hampered 
detailed interpretations. Oxygen levels in the atmosphere were likely 
relatively low during much of the early Palaeozoic, although there is 
discord between empirical data and geochemical models (and between 
models)17,18. The patchy and scant Ordovician geochemical data suggest 
generally lower oxygen availability in the shallow marine realm when 
compared to the Mesozoic–Cenozoic18,19.

In recent years, advances have been made in the development of 
geochemical proxies that help to elucidate ancient environmental con-
ditions at various spatio-temporal scales. With this, reconstruction of 
the redox evolution of marine environments through geologic time has 
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Iodine-to-calcium variations across the 
Baltoscandian palaeoshelf
The study sections represent an Early–Middle Ordovician regional shelf 
setting on the mid-latitude (~45° S) palaeocontinent of Baltica (Fig. 1).  
The sections form a biostratigraphically well-constrained transect 
across this shelf, going from shore proximal to distal roughly towards 
the present-day south and west (Figs. 1 and 2 and Supplementary  
Tables 1–12)25,26. Generally, low I/Ca values characterize the outer shelf. 
The most consistently high I/Ca values occur in the ~mid-shelf area. 
Eastward, I/Ca values are also relatively low. Long-term stratigraphic 
trends and shorter-term ‘excursions’ in I/Ca are consistent across the 
studied region—thus, the first-order stratigraphic patterns in I/Ca pro-
vide a faithful record of oxygen availability on the Baltoscandian shelf 
during the Early–Middle Ordovician. Differences between sections 
can largely be explained by varying proximity to a local–regional oxy-
cline, oceanic connection/restriction, water depth and current regimes 
across the shelf, but diagenetic alteration may locally play a role in some 
stratigraphic horizons (Supplementary Information sections 1–3).

The basal Floian (Early Ordovician) I/Ca values span a relatively 
large range (~2–5 μmol mol−1), indicating spatially variable oxygen 
conditions across the palaeoshelf. Higher values may be from very 
shallow-water environments related to the sedimentary break that 
commonly separates Floian strata from underlying rocks region-
ally (Fig. 2)26–28. The Floian thereafter is characterized by low I/Ca 
(~1–2), but values gradually increase towards a peak (~2.5–14.5) in the  
Floian–Dapingian (Early–Middle Ordovician) boundary interval. This 
suggests that water columns overlying Baltica transitioned from poorly 
to (near) well-oxygenated conditions through the Floian. Notably, the 
Floian–Dapingian transition, which appears to coincide with relatively 
low sea level, was associated with the expansion of carbonate sedimenta-
tion into many areas previously dominated by mudstone and shale25–27.

A pronounced decline in I/Ca occurs in the lowermost Dapingian 
strata, suggesting a region-wide decrease in water-column oxygen 
contents (Fig. 2). I/Ca values then mainly increase throughout the  
Dapingian. Consistently high I/Ca values (maximum ~5–7.5) occur 

become increasingly detailed. Iodine is redox-sensitive and among the 
earliest elements to be reduced under low-oxygen conditions in marine 
settings19–21. The dominant species of iodine in seawater are iodate (IO3

−, 
oxidized) and iodide (I−, reduced). Briefly and simplified, iodate can 
be structurally incorporated into carbonates whereas iodide cannot. 
Therefore, iodine concentrations can be used to assess marine oxygen 
conditions with the proxy expressed as iodine-to-calcium ratios (I/Ca) 
in carbonates. Such ratios are commonly reported as I/(Ca+Mg) to 
accommodate varying carbonate mineralogy; this is also done herein, 
but for brevity we use I/Ca notation. Studies in modern marine environ-
ments have established that I/Ca ratios >2.6 μmol mol−1 indicate locally 
well-oxygenated conditions19–21. Lower I/Ca ratios suggest at least some 
oxygen present, and <1.5 μmol mol−1 characterizes oxygen-limited 
conditions22. Here we apply a 1.5–2.6 μmol mol−1 transitional redox 
interval as a general reference. Although the long residence time of 
iodine entails similar concentrations in seas globally20, in practice,  
I/Ca constitutes a local–regional proxy for the presence and proxim-
ity of oxygen-depleted waters. Hence, care should be taken before 
attempting to extrapolate data at a global scale19. The geographic 
limitation however has clear strengths in that I/Ca records conditions 
at the sampling site and the oxygen sensitivity of iodine makes it useful 
for establishing initial local redox responses. Other geochemical prox-
ies, applicable to various lithologies, record global redox signals but 
are not necessarily reflective of local conditions23. Furthermore, such 
proxies typically respond to highly reducing conditions, limiting their 
capability to reconstruct subtle initial changes and variations close to 
the oxic–anoxic boundary across relatively small shelf areas, especially 
in carbonate settings24.

Regional-scale systematic analyses of I/Ca in shelf carbonates  
have the potential to provide a detailed and nuanced spatio- 
temporal understanding of water-column redox conditions in rela-
tion to the timing and rates of Ordovician biodiversification. Such 
studies may also shed light on the connections among climate, 
oceanographic conditions and the habitability of shelf environ-
ments in deep time.
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Fig. 1 | Palaeogeographic characteristics of the study area.  
a, Palaeogeographic reconstruction for the Middle Ordovician (early  
Darriwilian, ~466 Ma), with names of notable continental masses and 
intercontinental seas and modelled upper ocean circulation31 around Baltica 
indicated. Rectangle indicates area figured in b. The approximate distribution 
of land areas (tan-coloured shading) is generalized and simplified. b, Map 
of the Baltoscandian region, indicating the study localities (red dots) and 
notable features of the palaeoshelf as determined from relatively stable facies 
differentiation8,25. The areal distribution and extent of shelf features varied 

through time via influence from, for example, sea level and large-scale tectonics 
(main text and Supplementary Information section 2). Latitude and longitude 
refer to modern-day conditions. Panel a created with BugPlates (developed 
by T. H. Torsvik; www.geodynamics.no). Credits for basemap in b: data from 
Estonian Environment Agency (EEA), State Land Service of Latvia (VZD), Esri, 
Here, Garmin, Food and Agriculture Organization (FAO), National Oceanic and 
Atmospheric Administration (NOAA), United States Geological Survey (USGS); 
map created using ArcGIS software by Esri (www.esri.com).
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regionally in upper Dapingian through middle Darriwilian strata, signal-
ling a protracted time interval (~5 Myr) of well-oxygenated conditions 
across the shelf. This interval of sustained high I/Ca, which is most 
pronounced in the mid-shelf area, coincides with evidence of a marked 
drop in sea level8,25,29. A temporary episode of declining I/Ca (minimum 
~0.7) occurs near the Lenodus variabilis–Yangtzeplacognathus crassus 
conodont zonal boundary (Fig. 2).

The upper half of the Darriwilian is characterized by a return to 
relatively low I/Ca values and purportedly oxygen-limited conditions 
(Fig. 2). The outer shelf saw a return to (black) shale deposition as sea 
level apparently rose25–27,29.

Map projections of our I/Ca datasets indicate a gradual spread-
ing of well-oxygenated waters that moved into the interior of Baltica 
throughout the Early–Middle Ordovician (Fig. 3a–h and Supplementary 

Table 13). Oxygen-rich waters appear to have spread from the part of 
Baltica facing the Iapetus Ocean, roughly equatorward (Fig. 1)30. The 
regional I/Ca trends indicate that the mid-shelf area hosted the most 
consistently well-oxygenated environments, but the locus of appar-
ent peak marine oxygen concentrations migrated through time. This 
may reflect prevailing shelf currents (Supplementary Table 14) and 
bathymetric conditions, which shifted with the paleogeographic con-
figuration of Baltica and/or possibly with early stages of the Caledonian 
Orogeny25,26,30 (Supplementary Information section 2).

Shelf oxygenation, biotic and environmental 
changes
The increase in oxygen availability indicated by I/Ca from the latest 
Floian through middle Darriwilian coincides with a successive series 
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Fig. 2 | Compilation of iodine-to-calcium data, environmental parameters 
and biodiversity. All datasets scaled vertically according to biozonation 
(Supplementary Information section 3) and relative to the Geologic Time Scale 
2020 (ref. 49), regional stages (R.S.) after Nielsen et al.26. Ma stands for million 
years ago; Ep. stands for epoch. Horizontal dashed lines indicate global Age 
(Stage) boundaries, for lateral reference; vertical dashed lines in a–d indicate 
transitional redox interval (I/Ca 1.5–2.6 μmol mol−1; see main text). More positive 
I/Ca values indicate more dissolved oxygen in the marine environment. The data 
indicate that oxygen increased through the late Floian and into the early mid-
Darriwilian, concurrently with major increases in marine biodiversity.  
All I/(Ca+Mg) data reported in μmol mol−1; errors for individual measurements 
are smaller than the data symbols. a, I/(Ca+Mg), outer shelf (Fig. 1b). b, I/(Ca+Mg), 
middle shelf. A generalized interpretation of the main I/Ca trends indicated by 
shaded curve (tan-coloured field); the precision of this qualitative approximation 

is limited by variations in data density. c, I/(Ca+Mg), middle–inner shelf.  
d, I/(Ca+Mg), inner shelf. One ‘outlier’ datapoint (14.5 μmol mol−1) was omitted. 
e, Generalized sea-level curve (red line) showing presumed eustatic variations; 
composite after Nielsen29, Rasmussen et al.8, Lindskog and Eriksson25, Rasmussen 
et al.10 and Lindskog et al.28,37, excluding high-resolution local variability. f, Global 
sea-surface temperature (SST) curve (coloured solid field) based on oxygen 
isotopes (δ18O), modified from lowest-temperature decile (that is, highest δ18O 
decile, presumed to be the diagenetically best preserved signal) reconstruction 
of Goldberg et al.9 and atmospheric oxygen (O2) modified from Krause et al.17. 
g, High-resolution biodiversity data from Tinn and Meidla (ostracodes)36, 
Rasmussen et al. (brachiopods)40, Cooper et al. (graptolites)50, Rasmussen et al. 
(global total)3, Lindskog et al. (conodonts, Lynna River)37 and Rasmussen et al. 
(conodonts, Norway)10.
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of biodiversity ‘bursts’ and behavioural innovations among benthic, 
nektic and planktic organisms (Fig. 2). Dominant regional patterns of 
marine taxonomic richness closely resemble the trends within our I/Ca 
datasets. Notably, global graptolite diversity is remarkably similar in 
stratigraphic patterns compared to I/Ca throughout the entire study 
interval, suggesting that well-oxygenated upper ocean water columns 
along continental margins played an important role in driving biodi-
versification among early Palaeozoic zooplankton. The coincidence 

of major oceanic currents31 (Fig. 1a) with the spatio-temporal patterns 
of I/Ca (Fig. 3) suggests that the source area of oxygen-rich waters was 
outside of Baltica. Thus, the Early–Middle Ordovician redox develop-
ment on the Baltoscandian palaeoshelf was linked with events and 
processes at a broader, perhaps global, scale. Considering the relatively 
slow oxidation of iodide19,22, the I/Ca data indicate that widespread 
oxidizing conditions were prevalent in water masses in the vicinity of 
Baltica. There are at present no directly comparable I/Ca datasets from 
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Fig. 3 | Spatio-temporal development of relative oxygen conditions in 
Baltoscandia. a–h, Time series illustrating the spatio-temporal development 
of relative oxygen conditions (I/Ca) across the Baltoscandian shelf. a, Stippled 
lines indicate generalized shelf features (Fig. 1b) for reference. Opaque red 
circles indicate localities included in data processing and map projections. 
Arrows indicate dominant water current directions, based on cephalopod 

conch orientations (Supplementary Information sections 2 and 5). The I/Ca data 
patterns indicate that the levels of dissolved oxygen increased in the shelf sea and 
that relatively oxygen-rich waters spread onto Baltica through time and migrated 
towards the south and west (modern-day directions). Credit: basemaps, data 
from EEA, VZD, Esri, Here, Garmin, FAO, NOAA, USGS; maps created using ArcGIS 
software by Esri (www.esri.com).
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other parts of the world, but we note that our results agree with broadly 
correlative global redox proxy datasets16,32 and models of atmospheric 
oxygen14,17 that collectively suggest increasing oxygen during the late 
Floian–early Darriwilian and a decrease in the late Darriwilian (Fig. 2). 
This does however not imply that all parts of the global ocean experi-
enced the same and synchronous development33.

Peak I/Ca values at the Floian–Dapingian transition coincide 
with a regionally traceable hardground complex, colloquially termed  
‘Blommiga Bladet’ (Sweden), ‘Püstakkiht’ (Estonia) and ‘Steklo’  
(Russia)26. Innumerable bioerosional structures permeate the 
hardgrounds, with macroborings reaching unprecedented areal and 
volumetric density. The Floian–Dapingian boundary marks an impor-
tant step in the global ichnofossil record as hardground-dwelling 
infaunal organisms became frequent at the macroscopic scale34,35. 
The pitted hardgrounds of Baltoscandia form a key example of this 
development. It is plausible that the combination of relatively slow 
sedimentation and elevated oxygen, which penetrated deeper into the 
seafloor, provided optimal conditions for behavioural experimentation 
(Fig. 3b,c). Potentially, an ambient marine oxygen threshold was passed, 
as younger strata are characterized by extensive bioturbation25,28.

The long-duration interval of high I/Ca in the upper Dapingian–
middle Darriwilian coincided with remarkable changes in the biotic 
and sedimentary records (Fig. 2). The corresponding time interval 
was characterized by a marked increase in taxonomic richness among 
marine organisms in the Baltoscandian region and high-resolution 
diversity patterns co-vary with trends in our I/Ca datasets (Fig. 2 and 
Supplementary Information section 2)8,10,36,37. As Ordovician biodiversi-
fication took off in earnest, the marine fauna of Baltoscandia flourished 
overall and regional seascapes became the scenes of richer and more 
varied ecosystems. Whereas preceding times were characterized by 
low-diversity, trilobite-dominated faunas (Fig. 3a), the Middle Ordovi-
cian saw a prominent influx of brachiopods, bryozoans, echinoderms 
and other sessile benthos and conodonts and molluscs8,10,25,27–29,37–40  
(notably, large cephalopods41; Fig. 3b–h). The flourishing of organisms 
is reflected in the composition of the strata via a marked increase in 
the proportion of skeletal grains as rock-forming components25,27,28,37 
(Supplementary Fig. 1), also apparent at the global scale42. Arguably, 
the expansion of oxygenated waters across the shelf (Fig. 3b–h) played 
a fundamental role in this biotic development (below).

The distinct drop in I/Ca near the L. variabilis–Y. crassus cono-
dont zonal boundary coincides with the so-called Täljsten interval in  
Sweden, which is characterized by unusual litho- and biofacies (Fig. 2)25. 
Microbial fabrics and structures (oncoids, stromatolites) occur locally 
in Baltoscandia and possibly also globally43,44. Mass occurrences of 
Sphaeronites sp. cystoids (extinct echinoderms) are common, and this 
near-monospecific macrofauna has been interpreted as opportunistic 
colonization during adverse environmental conditions25 (Supplemen-
tary Information section 2). The overall characteristics of the ‘Täljsten’ 
are consistent with dominantly reducing conditions at the seafloor and 
suggest temporary restriction of local depositional environments. The 
re-establishment of relatively low I/Ca values in the upper Darriwilian 
may reflect the global environmental development, with widespread 
formation of black shales32.

Climate and oxygen catalysed Ordovician 
biodiversification
As sea level dropped globally through the late Floian–early Darriwilian, 
large areas of the Baltoscandian shelf probably became more influenced 
by hydrodynamic activity25,28,39,44 that entailed more consistent and  
efficient mixing of atmospheric oxygen into marine environments. 
However, sea-level change alone does not suffice to explain the 
observed shift to well-oxygenated conditions in the study interval. 
This is because oxygen-rich waters appear to have encroached upon the 
shelf from the Iapetus Ocean (Fig. 3), but an off-shelf direction would 
be expected if oxygenation was a simple result of a shallowing water 

column and migration of a regional oxygen minimum zone15. Hence, 
it is more likely that the progressive oxygenation reflects global-scale 
oceanographic changes8,33. It has been suggested that cooling sea sur-
faces and sea-level fluctuations during the Middle Ordovician were 
related, with the global climate state transitioning into ‘icehouse’-like 
conditions7,8,10. Climatic cooling provides a plausible background to the 
oxygenation history of the Baltoscandian shelf, as changes in marine 
current regimes and strengthening of thermohaline circulation would 
be expected from global ocean temperature decline8,31. The palaeo-
geographic position of Baltica probably played an important role33, 
as pervasive winds at mid-latitudes promoted mixing of atmospheric 
gasses into the regional shelf environment (Fig. 1a).

Cooling climate has repeatedly been promoted as a central driver 
behind Ordovician biodiversification7,8,10, as have increasing oxygen 
levels14. These two interpretations are not mutually exclusive but rather 
complementary, as cooling would have allowed more dissolved oxygen 
in marine water columns. Indeed, the main trends in our I/Ca data are 
inverse to temperature estimates (Fig. 2 and Supplementary Informa-
tion section 2). Climate and oxygen are intimately related through feed-
back processes at various spatio-temporal scales, and both strongly 
influence the distribution and organization of organisms45–47—thus, 
the combined effects of oceanic cooling and oxygenation provide a 
more holistic explanatory scenario for large-scale Ordovician biotic 
changes. A synergistic effect can be envisioned, wherein decreasing 
temperatures and rising oxygen levels expanded and stabilized the 
area and volume of habitable space via reduction of environmental and 
physiological hazards and stressors and enabled relatively energetic 
lifestyles48. Fundamentally, the net outcome was more balanced in 
terms of aerobic–metabolic requirements among the biota (Supple-
mentary Information section 2).

Our study suggests that the Ordovician marine redox landscape 
was dynamic and evolving via multiple interacting mechanisms. It 
is likely that a combination of factors led to progressive radiation of 
marine life throughout the Ordovician, and spatio-temporal differ-
ences in biodiversity development at the global scale1,4,5 paint a com-
plex picture wherein dominant influences apparently varied between 
places and times. Nevertheless, at least on Baltica, several major biotic 
‘events’ clearly coincide with I/Ca peaks and long-term trends, sug-
gesting that oxygen indeed played an important role in evolutionary 
history during the Ordovician. Our I/Ca data are congruent with global 
models of oceanic oxygen conditions for the studied time interval33, 
indicating clear linkages to Ordovician climate9 and large-scale oceanic 
circulation31. Although seascapes differ, the inferred connections 
between climate and marine oxygenation in the Ordovician provide 
a glimpse into the future and the fate of modern shelf ecosystems as 
global temperatures rise.
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Methods
Samples were collected at the different localities during numer-
ous field campaigns. Representative subsamples were selected for 
thin-section production (for visual screening) and preparation of 
sample powders (for geochemical analyses). The powders were pro-
duced via low-speed drilling of fresh, macroscopically well-preserved 
rock portions (multiple spots per sample for homogenization), using 
diamond-tipped microdrill bits that were cleaned with ethanol and 
dried with compressed air between individual samples. Reference 
sample materials are archived at the Department of Geology, Lund 
University.

I/(Ca+Mg) analyses were performed using standard procedures 
outlined by Lu et al.19,20 and previous work from the Geochemistry 
Group at the National High Magnetic Field Laboratory at Florida 
State University51–53. Between 2 and 4 mg of carbonate powder was 
weighed into microcentrifuge tubes and dissolved in trace metal 
grade 3% HNO3. Samples were then diluted with ultrapure 2% HNO3 
to create a matrix solution of 50 ± 5 ppm [Ca2+] + [Mg2+]. Analyses 
were performed on an Agilent 7500cs inductively coupled plasma 
mass spectrometer within 2 h of acidification (due to the volatility 
of iodine)19–21. The precision of 127I is typically better than 2% and is 
not reported separately for individual samples. Standard devia-
tion in counts per second (cps) for three blanks in a row is typically 
below 300 cps, and the sensitivity for a 1 part per billion standard is 
typically 60,000–120,000 cps depending on the instrument set-up 
each day (that is, sensitivity varies day to day, but the geostandards 
document consistent ratios). Calibration standards were continu-
ally made by serial dilution of a High-Purity Standards 10 ppm 
iodide inductively coupled plasma mass spectrometer standard and 
with a similar matrix of ~50 ppm Ca + Mg. The long-term accuracy 
of the analytical procedure was ensured via replicate measure-
ments of known reference materials (KL1-2, KL1-4) and calculated 
to ±0.5 µmol mol−1.

Land outlines and national borders in Figs. 1b and 3 modified 
from ‘Light Gray Canvas’ basemap (www.arcgis.com/home/item.htm
l?id=979c6cc89af9449cbeb5342a439c6a76). For the spatio-temporal 
reconstruction maps in Fig. 3, data series were subdivided according 
to biostratigraphy and average I/Ca values were calculated from the 
shortest possible intervals that can be resolved and used for rela-
tively robust stratigraphic correlations (Supplementary Table 13). The 
reconstructions were produced using the Inverse Distance Weighted 
interpolation method (Geostatistical Analyst toolset; default settings 
with ‘Power’ set to 2.5) in Esri ArcGIS Pro 2.6. Localities without relevant 
strata (due to stratigraphic gaps, lack of sampling and so on) were omit-
ted from individual analytical runs (Fig. 3). Due to lack of data, land 
extent and other possible topographic barriers on the palaeoshelf were 
not considered in the analyses. For further information on the Inverse 
Distance Weighted method, readers are referred to Esri’s software 
documentation for ArcGIS.

Data availability
The datasets generated during this study are available in the associated 
Supplementary Information document. The analytical data are also 
accessible via the EarthChem online data repository at https://doi.
org/10.26022/IEDA/113005.
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