Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lowland river sinuosity on Earth and Mars set by the pace of meandering and avulsion

Abstract

Meandering rivers have shaped the landscapes of Earth and Mars through the development of sinuous and migrating channels. River channel sinuosity reflects an interplay of primary agents including water discharge and sediment supply, information that is archived in the sedimentary record. Here we examine the spatial variability of the sinuosity of 21 lowland rivers on Earth and six ancient river systems on Mars using satellite imagery, and identify a dichotomy in spatial patterns: instead of decreasing downstream as previously suggested, we find that the sinuosity either increases or remains constant approaching the river outlet. We conduct numerical modelling of channel migration to show that these bimodal patterns can be explained as a competition between the timescale required for channels to establish steady-state sinuosity and the avulsion timescale. This highlights the role of varying water discharge on meander development and demonstrates how the planform morphology of modern and ancient fluvial systems may be used to interpret hydrological regimes of river systems, with implications for lowland river migration patterns under future shifting climate regimes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Maps of meandering rivers and fluvial ridges and associated spatial variability in sinuosity.
Fig. 2: Spatial variability in the binned average sinuosity.
Fig. 3: Measured river sinuosity compared to model results.
Fig. 4: Channel migration rate, sediment supply and discharge properties for the investigated Earth rivers.

Similar content being viewed by others

Data availability

The compiled data on river paths for analysis of the sinuosity and lateral migration rate are available via Figshare at https://doi.org/10.6084/m9.figshare.22308637.

Code availability

The MATLAB codes for plotting Figs. 24 are available for download from https://doi.org/10.5281/zenodo.7749850.

References

  1. Ahmed, J., Constantine, J. A. & Dunne, T. The role of sediment supply in the adjustment of channel sinuosity across the Amazon Basin. Geology 47, 807–810 (2019).

    Article  Google Scholar 

  2. Sylvester, Z., Durkin, P. & Covault, J. A. High curvatures drive river meandering. Geology 47, 263–266 (2019).

    Article  Google Scholar 

  3. Kite, E. S. et al. Persistence of intense, climate-driven runoff late in Mars history. Sci. Adv. 5, eaav7710 (2019).

    Article  Google Scholar 

  4. Leopold, L. B. & Wolman, M. G. River Channel Patterns: Braided, Meandering, and Straight Professional Paper 282-B (US Geological Survey, 1957); https://pubs.er.usgs.gov/publication/pp282B

  5. Wilkerson, G. V. & Parker, G. Physical basis for quasi-universal relationships describing bankfull hydraulic geometry of sand-bed rivers. J. Hydraul. Eng. 137, 739–753 (2011).

    Article  Google Scholar 

  6. Wiman, C., Hamilton, B., Dee, S. G. & Muñoz, S. E. Reduced lower Mississippi River discharge during the Medieval era. Geophys. Res. Lett. 48, e2020GL091182 (2021).

    Article  Google Scholar 

  7. Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).

    Article  Google Scholar 

  8. Ielpi, A. & Lapôtre, M. G. A. A tenfold slowdown in river meander migration driven by plant life. Nat. Geosci. 13, 82–86 (2020).

    Article  Google Scholar 

  9. Hayden, A. T., Lamb, M. P. & McElroy, B. J. Constraining the timespan of fluvial activity from the intermittency of sediment transport on Earth and Mars. Geophys. Res. Lett. 48, e2021GL092598 (2021).

    Article  Google Scholar 

  10. Lapôtre, M. G. A. & Ielpi, A. The pace of fluvial meanders on Mars and implications for the western delta deposits of Jezero crater. AGU Adv. 1, e2019AV000141 (2020).

    Article  Google Scholar 

  11. Ikeda, H. in River Meandering Vol. 12 (eds Ikeda, S. & Parker, G.) 51–68 (American Geophysical Union, 1989); https://doi.org/10.1029/WM012p0051

  12. Hudson, P. F. & Kesel, R. H. Channel migration and meander-bend curvature in the lower Mississippi River prior to major human modification. Geology 28, 531–534 (2000).

    Article  Google Scholar 

  13. Cardenas, B. T., Mohrig, D. & Goudge, T. A. Fluvial stratigraphy of valley fills at Aeolis Dorsa, Mars: evidence for base-level fluctuations controlled by a downstream water body. Geol. Soc. Am. Bull. 130, 484–498 (2018).

    Article  Google Scholar 

  14. DiBiase, R. A., Limaye, A. B., Scheingross, J. S., Fischer, W. W. & Lamb, M. P. Deltaic deposits at Aeolis Dorsa: sedimentary evidence for a standing body of water on the northern plains of Mars. J. Geophys. Res. Planets 118, 1285–1302 (2013).

    Article  Google Scholar 

  15. Chadwick, A. J., Lamb, M. P. & Ganti, V. Accelerated river avulsion frequency on lowland deltas due to sea-level rise. Proc. Natl Acad. Sci. USA 117, 17584–17590 (2020).

    Article  Google Scholar 

  16. Chatanantavet, P., Lamb, M. P. & Nittrouer, J. A. Backwater controls of avulsion location on deltas. Geophys. Res. Lett. https://doi.org/10.1029/2011GL050197 (2012).

  17. Ganti, V., Chadwick, A. J., Hassenruck-Gudipati, H. J. & Lamb, M. P. Avulsion cycles and their stratigraphic signature on an experimental backwater-controlled delta: backwater-controlled avulsion cycles. J. Geophys. Res. Earth Surf. 121, 1651–1675 (2016).

    Article  Google Scholar 

  18. Ganti, V., Chadwick, A. J., Hassenruck-Gudipati, H. J., Fuller, B. M. & Lamb, M. P. Experimental river delta size set by multiple floods and backwater hydrodynamics. Sci. Adv. 2, e1501768 (2016).

    Article  Google Scholar 

  19. Hayden, A. T. & Lamb, M. P. Fluvial sinuous ridges of the Morrison Formation, USA: meandering, scarp retreat, and implications for Mars. J. Geophys. Res. Planets 125, e2020JE006470 (2020).

    Article  Google Scholar 

  20. Hayden, A. T., Lamb, M. P. & Carney, A. J. Similar curvature-to-width ratios for channels and channel belts: implications for paleo-hydraulics of fluvial ridges on Mars. Geology https://doi.org/10.1130/G48370.1 (2021).

    Article  Google Scholar 

  21. Cardenas, B. T., Lamb, M. P., Jobe, Z. R., Mohrig, D. & Swartz, J. M. Morphodynamic preservation of fluvial channel belts. Sediment. Rec. https://doi.org/10.2110/001c.66285 (2023).

  22. Cardenas, B. T. & Lamb, M. P. Paleogeographic reconstructions of an ocean margin on Mars based on deltaic sedimentology at Aeolis Dorsa. J. Geophys. Res. Planets 127, e2022JE007390 (2022).

    Article  Google Scholar 

  23. Chadwick, A. J., Lamb, M. P., Moodie, A. J., Parker, G. & Nittrouer, J. A. Origin of a preferential avulsion node on lowland river deltas. Geophys. Res. Lett. 46, 4267–4277 (2019).

    Article  Google Scholar 

  24. Prasojo, O. A., Hoey, T. B., Owen, A. & Williams, R. D. Slope break and avulsion locations scale consistently in global deltas. Geophys. Res. Lett. 49, e2021GL093656 (2022).

    Article  Google Scholar 

  25. Ratliff, K. M., Hutton, E. W. H. & Murray, A. B. Modeling long-term delta dynamics reveals persistent geometric river avulsion locations. Earth Planet. Sci. Lett. 559, 116786 (2021).

    Article  Google Scholar 

  26. Bogoni, M., Putti, M. & Lanzoni, S. Modeling meander morphodynamics over self-formed heterogeneous floodplains. Water Resour. Res. 53, 5137–5157 (2017).

    Article  Google Scholar 

  27. Constantine, J. A., McLean, S. R. & Dunne, T. A mechanism of chute cutoff along large meandering rivers with uniform floodplain topography. Geol. Soc. Am. Bull. 122, 855–869 (2010).

    Article  Google Scholar 

  28. Jarriel, T., Swartz, J. & Passalacqua, P. Global rates and patterns of channel migration in river deltas. Proc. Natl Acad. Sci. USA 118, e2103178118 (2021).

    Article  Google Scholar 

  29. Eke, E., Parker, G. & Shimizu, Y. Numerical modeling of erosional and depositional bank processes in migrating river bends with self-formed width: morphodynamics of bar push and bank pull. J. Geophys. Res. Earth Surf. 119, 1455–1483 (2014).

    Article  Google Scholar 

  30. van de Lageweg, W. I., van Dijk, W. M., Baar, A. W., Rutten, J. & Kleinhans, M. G. Bank pull or bar push: what drives scroll-bar formation in meandering rivers? Geology 42, 319–322 (2014).

    Article  Google Scholar 

  31. Wu, C. et al. Lateral migration dynamics and bank erodibility of the lowermost Mississippi River. In Proc. AGU Fall Meeting EP52A-05 (American Geophysical Union, 2022).

  32. Dong, T. Y. et al. Roles of bank material in setting bankfull hydraulic geometry as informed by the Selenga River delta, Russia. Water Resour. Res. 55, 827–846 (2019).

    Article  Google Scholar 

  33. Anderson, J. B. et al. Recycling sediments between source and sink during a eustatic cycle: systems of late Quaternary northwestern Gulf of Mexico Basin. Earth Sci. Rev. 153, 111–138 (2016).

    Article  Google Scholar 

  34. Simms, A. R., Anderson, J. B., Taha, Z. P. & Rodriguez, A. B. in Incised Valleys in Time and Space Vol. 85 (eds Dalrymple, R. W. et al.) (SEPM Society for Sedimentary Geology, 2006); https://doi.org/10.2110/pec.06.85.0117

  35. Guerit, L., Foreman, B. Z., Chen, C., Paola, C. & Castelltort, S. Autogenic delta progradation during sea-level rise within incised valleys. Geology 49, 273–277 (2020).

    Article  Google Scholar 

  36. van Dijk, W. M., van de Lageweg, W. I. & Kleinhans, M. G. Formation of a cohesive floodplain in a dynamic experimental meandering river. Earth Surf. Process. Landf. 38, 1550–1565 (2013).

    Google Scholar 

  37. van Dijk, W. M., van de Lageweg, W. I. & Kleinhans, M. G. Experimental meandering river with chute cutoffs. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2011JF002314 (2012).

  38. Naito, K. & Parker, G. Can bankfull discharge and bankfull channel characteristics of an alluvial meandering river be cospecified from a flow duration curve? J. Geophys. Res. Earth Surf. 124, 2381–2401 (2019).

    Article  Google Scholar 

  39. Parker, G. et al. A new framework for modeling the migration of meandering rivers. Earth Surf. Process. Landf. 36, 70–86 (2011).

    Article  Google Scholar 

  40. Nittrouer, J. A., Shaw, J., Lamb, M. P. & Mohrig, D. Spatial and temporal trends for water-flow velocity and bed-material sediment transport in the lower Mississippi River. Geol. Soc. Am. Bull. 124, 400–414 (2012).

    Article  Google Scholar 

  41. Barefoot, E. A., Nittrouer, J. A. & Straub, K. M. Non-monotonic floodplain responses to changes in flooding intensity. J. Geophys. Res. Earth Surf. 126, e2021JF006310 (2021).

    Article  Google Scholar 

  42. Han, J. & Kim, W. Linking levee-building processes with channel avulsion: geomorphic analysis for assessing avulsion frequency and channel reoccupation. Earth Surf. Dynam. 10, 743–759 (2022).

    Article  Google Scholar 

  43. Syvitski, J. P. M. & Milliman, J. D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 115, 1–19 (2007).

    Article  Google Scholar 

  44. Hansford, M. R., Plink-Björklund, P. & Jones, E. R. Global quantitative analyses of river discharge variability and hydrograph shape with respect to climate types. Earth Sci. Rev. 200, 102977 (2020).

    Article  Google Scholar 

  45. Stucky de Quay, G., Goudge, T. A., Kite, E. S., Fassett, C. I. & Guzewich, S. D. Limits on runoff episode duration for early Mars: integrating lake hydrology and climate models. Geophys. Res. Lett. 48, e2021GL093523 (2021).

    Article  Google Scholar 

  46. Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 6, 508–513 (2016).

    Article  Google Scholar 

  47. Bouwer, L. M., Vermaat, J. E. & Aerts, J. C. J. H. Regional sensitivities of mean and peak river discharge to climate variability in Europe. J. Geophys. Res. Atmos. https://doi.org/10.1029/2008JD010301 (2008).

  48. Barefoot, E. A. et al. Evidence for enhanced fluvial channel mobility and fine sediment export due to precipitation seasonality during the Paleocene–Eocene thermal maximum. Geology https://doi.org/10.1130/G49149.1 (2021).

  49. Nanditha, J. S. et al. The Pakistan flood of August 2022: causes and implications. Earths Future 11, e2022EF003230 (2023).

    Article  Google Scholar 

  50. Paola, C. & Mohrig, D. Palaeohydraulics revisited: palaeoslope estimation in coarse-grained braided rivers. Basin Res. 8, 243–254 (1996).

    Article  Google Scholar 

  51. Ikeda, S., Parker, G. & Sawai, K. Bend theory of river meanders. Part 1. Linear development. J. Fluid Mech. 112, 363–377 (1981).

    Article  Google Scholar 

  52. Sun, T., Meakin, P., Jøssang, T. & Schwarz, K. A simulation model for meandering rivers. Water Resour. Res. 32, 2937–2954 (1996).

    Article  Google Scholar 

  53. Larsen, E. W. Mechanics and Modeling of River Meander Migration. PhD thesis, Univ. California, Berkeley (1995).

  54. Moran, K. E., Nittrouer, J. A., Perillo, M. M., Lorenzo‐Trueba, J. & Anderson, J. B. Morphodynamic modeling of fluvial channel fill and avulsion time scales during early Holocene transgression, as substantiated by the incised valley stratigraphy of the Trinity River, Texas. J. Geophys. Res. Earth Surf. 122, 215–234 (2017).

    Article  Google Scholar 

  55. Hobo, N., Makaske, B., Wallinga, J. & Middelkoop, H. Reconstruction of eroded and deposited sediment volumes of the embanked River Waal, the Netherlands, for the period ad 1631–present. Earth Surf. Process. Landf. 39, 1301–1318 (2014).

    Article  Google Scholar 

  56. Woolderink, H. A. G., Cohen, K. M., Kasse, C., Kleinhans, M. G. & Van Balen, R. T. Patterns in river channel sinuosity of the Meuse, Roer and Rhine rivers in the Lower Rhine Embayment rift-system, are they tectonically forced? Geomorphology 375, 107550 (2021).

    Article  Google Scholar 

  57. Gensen, M. R. A., Warmink, J. J., Huthoff, F. & Hulscher, S. J. M. H. Feedback mechanism in bifurcating river systems: the effect on water-level sensitivity. Water 12, 1915 (2020).

    Article  Google Scholar 

  58. Pol, J. Hydrograph Shape Variability on the River Meuse. MSc thesis, Delft Univ. Technology (2014).

  59. Berendsen, H. J. A. & Stouthamer, E. Paleogeographic evolution and avulsion history of the Holocene Rhine–Meuse delta, The Netherlands. Neth. J. Geosci. 81, 97–112 (2002).

    Google Scholar 

  60. Berendsen, H. J. A. & Stouthamer, E. Late Weichselian and Holocene palaeogeography of the Rhine–Meuse delta, The Netherlands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 161, 311–335 (2000).

    Article  Google Scholar 

  61. Giosan, L. et al. Young Danube delta documents stable Black Sea level since the middle Holocene: morphodynamic, paleogeographic, and archaeological implications. Geology 34, 757–760 (2006).

    Article  Google Scholar 

  62. Fisk, H. N. Geological Investigation of the Alluvial Valley of the Lower Mississippi River (Mississippi River Commission, US Army Corps of Engineers, 1944).

  63. Chamberlain, E. L., Törnqvist, T. E., Shen, Z., Mauz, B. & Wallinga, J. Anatomy of Mississippi Delta growth and its implications for coastal restoration. Sci. Adv. 4, eaar4740 (2018).

    Article  Google Scholar 

  64. Heitmuller, F. T. Channel adjustments to historical disturbances along the lower Brazos and Sabine Rivers, south-central USA. Geomorphology 204, 382–398 (2014).

    Article  Google Scholar 

  65. Strom, K. & Rouhnia, M. Suspended Sediment Sampling and Annual Sediment Yield on the Lower Brazos River (Texas Water Development Board, 2013); https://www.twdb.texas.gov/publications/reports/contracted_reports/doc/1000011085_1100011340_brazossediment.pdf

  66. Swartz, J. M., Goudge, T. A. & Mohrig, D. C. Quantifying coastal fluvial morphodynamics over the last 100 years on the lower Rio Grande, USA and Mexico. J. Geophys. Res. Earth Surf. 125, e2019JF005443 (2020).

    Article  Google Scholar 

  67. Ijaz, M. W., Mahar, R. B., Ansari, K., Siyal, A. A. & Anjum, M. N. Integrated assessment of contemporary hydro-geomorphologic evolution of the Indus River Estuary, Pakistan in context to regulated fluvial regimes. Estuar. Coast. Shelf Sci. 236, 106657 (2020).

    Article  Google Scholar 

  68. Syvitski, J. P. M. et al. Anthropocene metamorphosis of the Indus Delta and lower floodplain. Anthropocene 3, 24–35 (2013).

    Article  Google Scholar 

  69. Park, E., Lim, J., Ho, H. L., Herrin, J. & Chitwatkulsiri, D. Source-to-sink sediment fluxes and budget in the Chao Phraya River, Thailand: a multi-scale analysis based on the national dataset. J. Hydrol. 594, 125643 (2021).

    Article  Google Scholar 

  70. Tingsanchali, T. & Kumar Lal, N. Subsidence of flood waves in overbank flow areas. J. Hydraul. Res. 26, 585–597 (1988).

    Article  Google Scholar 

  71. Tanabe, S. et al. Stratigraphy and Holocene evolution of the mud-dominated Chao Phraya delta, Thailand. Quat. Sci. Rev. 22, 789–807 (2003).

    Article  Google Scholar 

  72. Meade, R. H. & Moody, J. A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process. 24, 35–49 (2010).

    Google Scholar 

  73. Garvin, M. G. Late Quaternary Geochronologic, Stratigraphic, and Sedimentologic Framework of the Trinity River Incised Valley: East Texas Coast. MSc thesis, Louisiana State Univ. (2008).

  74. Erkens, G., Cohen, K. M., Gouw, M. J. P., Middelkoop, H. & Hoek, W. Z. in Sediment Dynamics and the Hydromorphology of Fluvial Systems (eds Rowan, J. S. et al.) IAHS Publication Number 306; 406–415 (International Association of Hydrological Sciences, 2006).

  75. Toonen, W. H. J. Flood frequency analysis and discussion of non-stationarity of the Lower Rhine flooding regime (ad 1350–2011): using discharge data, water level measurements, and historical records. J. Hydrol. 528, 490–502 (2015).

    Article  Google Scholar 

  76. Panin, N. & Jipa, D. Danube river sediment input and its interaction with the north-western Black Sea. Estuar. Coast. Shelf Sci. 54, 551–562 (2002).

    Article  Google Scholar 

  77. Cox, J. R. et al. Anthropogenic effects on the contemporary sediment budget of the lower Rhine–Meuse Delta channel network. Earths Future 9, e2020EF001869 (2021).

    Article  Google Scholar 

  78. Garzanti, E., Andò, S., Padoan, M., Vezzoli, G. & El Kammar, A. The modern Nile sediment system: processes and products. Quat. Sci. Rev. 130, 9–56 (2015).

    Article  Google Scholar 

  79. Wohl, E. E. in Large Rivers: Geomorphology and Management (ed. Gupta, A.) 29–44 (Wiley, 2007); https://doi.org/10.1002/9780470723722.ch3

  80. Milliman, J. D. & Syvitski, J. P. M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

    Article  Google Scholar 

  81. Heitmuller, F. T. & Greene, L. E. Historical Channel Adjustment and Estimates of Selected Hydraulic Values in the Lower Sabine River and Lower Brazos River Basins, Texas and Louisiana. Scientific Investigations Report 2009-5174 (US Geological Survey, 2009); https://pubs.er.usgs.gov/publication/sir20095174

  82. Inam, A. et al. in Large Rivers: Geomorphology and Management (ed. Gupta, A.) 333–346 (Wiley, 2007); https://doi.org/10.1002/9780470723722.ch16

Download references

Acknowledgements

Funding for this project was provided by the National Research Foundation of Korea (NRF-2017R1A6A1A07015374) to W.K., Yonsei University (Post-Doctoral Researcher Supporting Program, Yonsei University Research Fund #2021-12-0018) to C.W. and the Excellent Young Scientist Fund (Overseas, 2021) from NSFC to H.M.

Author information

Authors and Affiliations

Authors

Contributions

C.W. and W.K. conceived the paper. C.W., B.T.C., R.H. and A.M. collected the data. All authors contributed to the analysis, writing, reviewing and editing.

Corresponding author

Correspondence to Wonsuck Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Joshua Ahmed and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Spatial trend in channel sinuosity Ω of variable-sinuosity Earth rivers.

Dots are sinuosity measurements of individual bends and the black solid lines are binned averages with a bin size of 0.1La, where La is the avulsion length.

Extended Data Fig. 2 Spatial trend in channel sinuosity Ω of constant-sinuosity Earth rivers.

Dots are sinuosity measurements of individual bends and the black solid lines are binned averages with a bin size of 0.1La, where La is the avulsion length.

Extended Data Fig. 3 Planform patterns of fluvial sandstone ridges of 6 Martian fluvial-deltaic systems (a-c and g-i) and their associated spatial trends in sinuosity Ω (d-f and j-l).

Dots are sinuosity measurements of individual bends and the black solid lines are binned averages with a bin size of 0.1La, where La is the avulsion length each marked by a dashed line. Projected distance PD of sinuosity measurements is normalized by La. Dashed line marks the avulsion location.

Extended Data Fig. 4 Historical images, maps and satellite images of the Brazos, Colorado, Indus, Trinity, and Mississippi rivers.

River centerlines were traced to calculate lateral channel migration rates. Credit: Brazos, Colorado and Trinity, Texas Natural Resources Information System; Indus, Landsat Copernicus via Google Earth; Mississippi and Lafourche, US Army Corps of Engineers.

Extended Data Fig. 5 Satellite images and associated river centerlines for the Neches, Sabine, Suwannee, Tombigbee, and Yana rivers.

Credit: Google Earth (third-party data providers are listed on the image).

Extended Data Fig. 6 Satellite images and associated river centerlines for the Alabama, Apalachicola, Don, Kobuk, and Mackenzie rivers.

Credit: Google Earth (third-party data providers are listed on the image).

Extended Data Fig. 7 Correlation between sediment supply and channel lateral migration rate.

Blue dots and green diamonds represent the average measured lateral migration rate for variable- and constant-sinuosity river groups, respectively. Error bar denotes the measured maximum and minimum lateral migration rate for the natural rivers. The black line represents the regression fit. Sample size for each data point corresponds to the number of migration rate measurements based on traced centerlines at different times (Extended Data Figs. 46).

Extended Data Table 1 Key model input parameters53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71 for natural rivers in Fig. 3
Extended Data Table 2 Sediment (Qs) and water budget (Qw), discharge variability (DV), flood intensity (QI), and lateral migration rate (r*) for natural rivers72,73,74,75,76,77,78,79,80,81,82

Supplementary information

Supplementary Information

Supplementary Fig. 1, Table 1 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Kim, W., Herring, R. et al. Lowland river sinuosity on Earth and Mars set by the pace of meandering and avulsion. Nat. Geosci. 16, 747–753 (2023). https://doi.org/10.1038/s41561-023-01231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01231-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing