Abstract
Meandering rivers have shaped the landscapes of Earth and Mars through the development of sinuous and migrating channels. River channel sinuosity reflects an interplay of primary agents including water discharge and sediment supply, information that is archived in the sedimentary record. Here we examine the spatial variability of the sinuosity of 21 lowland rivers on Earth and six ancient river systems on Mars using satellite imagery, and identify a dichotomy in spatial patterns: instead of decreasing downstream as previously suggested, we find that the sinuosity either increases or remains constant approaching the river outlet. We conduct numerical modelling of channel migration to show that these bimodal patterns can be explained as a competition between the timescale required for channels to establish steady-state sinuosity and the avulsion timescale. This highlights the role of varying water discharge on meander development and demonstrates how the planform morphology of modern and ancient fluvial systems may be used to interpret hydrological regimes of river systems, with implications for lowland river migration patterns under future shifting climate regimes.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The compiled data on river paths for analysis of the sinuosity and lateral migration rate are available via Figshare at https://doi.org/10.6084/m9.figshare.22308637.
Code availability
The MATLAB codes for plotting Figs. 2–4 are available for download from https://doi.org/10.5281/zenodo.7749850.
References
Ahmed, J., Constantine, J. A. & Dunne, T. The role of sediment supply in the adjustment of channel sinuosity across the Amazon Basin. Geology 47, 807–810 (2019).
Sylvester, Z., Durkin, P. & Covault, J. A. High curvatures drive river meandering. Geology 47, 263–266 (2019).
Kite, E. S. et al. Persistence of intense, climate-driven runoff late in Mars history. Sci. Adv. 5, eaav7710 (2019).
Leopold, L. B. & Wolman, M. G. River Channel Patterns: Braided, Meandering, and Straight Professional Paper 282-B (US Geological Survey, 1957); https://pubs.er.usgs.gov/publication/pp282B
Wilkerson, G. V. & Parker, G. Physical basis for quasi-universal relationships describing bankfull hydraulic geometry of sand-bed rivers. J. Hydraul. Eng. 137, 739–753 (2011).
Wiman, C., Hamilton, B., Dee, S. G. & Muñoz, S. E. Reduced lower Mississippi River discharge during the Medieval era. Geophys. Res. Lett. 48, e2020GL091182 (2021).
Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).
Ielpi, A. & Lapôtre, M. G. A. A tenfold slowdown in river meander migration driven by plant life. Nat. Geosci. 13, 82–86 (2020).
Hayden, A. T., Lamb, M. P. & McElroy, B. J. Constraining the timespan of fluvial activity from the intermittency of sediment transport on Earth and Mars. Geophys. Res. Lett. 48, e2021GL092598 (2021).
Lapôtre, M. G. A. & Ielpi, A. The pace of fluvial meanders on Mars and implications for the western delta deposits of Jezero crater. AGU Adv. 1, e2019AV000141 (2020).
Ikeda, H. in River Meandering Vol. 12 (eds Ikeda, S. & Parker, G.) 51–68 (American Geophysical Union, 1989); https://doi.org/10.1029/WM012p0051
Hudson, P. F. & Kesel, R. H. Channel migration and meander-bend curvature in the lower Mississippi River prior to major human modification. Geology 28, 531–534 (2000).
Cardenas, B. T., Mohrig, D. & Goudge, T. A. Fluvial stratigraphy of valley fills at Aeolis Dorsa, Mars: evidence for base-level fluctuations controlled by a downstream water body. Geol. Soc. Am. Bull. 130, 484–498 (2018).
DiBiase, R. A., Limaye, A. B., Scheingross, J. S., Fischer, W. W. & Lamb, M. P. Deltaic deposits at Aeolis Dorsa: sedimentary evidence for a standing body of water on the northern plains of Mars. J. Geophys. Res. Planets 118, 1285–1302 (2013).
Chadwick, A. J., Lamb, M. P. & Ganti, V. Accelerated river avulsion frequency on lowland deltas due to sea-level rise. Proc. Natl Acad. Sci. USA 117, 17584–17590 (2020).
Chatanantavet, P., Lamb, M. P. & Nittrouer, J. A. Backwater controls of avulsion location on deltas. Geophys. Res. Lett. https://doi.org/10.1029/2011GL050197 (2012).
Ganti, V., Chadwick, A. J., Hassenruck-Gudipati, H. J. & Lamb, M. P. Avulsion cycles and their stratigraphic signature on an experimental backwater-controlled delta: backwater-controlled avulsion cycles. J. Geophys. Res. Earth Surf. 121, 1651–1675 (2016).
Ganti, V., Chadwick, A. J., Hassenruck-Gudipati, H. J., Fuller, B. M. & Lamb, M. P. Experimental river delta size set by multiple floods and backwater hydrodynamics. Sci. Adv. 2, e1501768 (2016).
Hayden, A. T. & Lamb, M. P. Fluvial sinuous ridges of the Morrison Formation, USA: meandering, scarp retreat, and implications for Mars. J. Geophys. Res. Planets 125, e2020JE006470 (2020).
Hayden, A. T., Lamb, M. P. & Carney, A. J. Similar curvature-to-width ratios for channels and channel belts: implications for paleo-hydraulics of fluvial ridges on Mars. Geology https://doi.org/10.1130/G48370.1 (2021).
Cardenas, B. T., Lamb, M. P., Jobe, Z. R., Mohrig, D. & Swartz, J. M. Morphodynamic preservation of fluvial channel belts. Sediment. Rec. https://doi.org/10.2110/001c.66285 (2023).
Cardenas, B. T. & Lamb, M. P. Paleogeographic reconstructions of an ocean margin on Mars based on deltaic sedimentology at Aeolis Dorsa. J. Geophys. Res. Planets 127, e2022JE007390 (2022).
Chadwick, A. J., Lamb, M. P., Moodie, A. J., Parker, G. & Nittrouer, J. A. Origin of a preferential avulsion node on lowland river deltas. Geophys. Res. Lett. 46, 4267–4277 (2019).
Prasojo, O. A., Hoey, T. B., Owen, A. & Williams, R. D. Slope break and avulsion locations scale consistently in global deltas. Geophys. Res. Lett. 49, e2021GL093656 (2022).
Ratliff, K. M., Hutton, E. W. H. & Murray, A. B. Modeling long-term delta dynamics reveals persistent geometric river avulsion locations. Earth Planet. Sci. Lett. 559, 116786 (2021).
Bogoni, M., Putti, M. & Lanzoni, S. Modeling meander morphodynamics over self-formed heterogeneous floodplains. Water Resour. Res. 53, 5137–5157 (2017).
Constantine, J. A., McLean, S. R. & Dunne, T. A mechanism of chute cutoff along large meandering rivers with uniform floodplain topography. Geol. Soc. Am. Bull. 122, 855–869 (2010).
Jarriel, T., Swartz, J. & Passalacqua, P. Global rates and patterns of channel migration in river deltas. Proc. Natl Acad. Sci. USA 118, e2103178118 (2021).
Eke, E., Parker, G. & Shimizu, Y. Numerical modeling of erosional and depositional bank processes in migrating river bends with self-formed width: morphodynamics of bar push and bank pull. J. Geophys. Res. Earth Surf. 119, 1455–1483 (2014).
van de Lageweg, W. I., van Dijk, W. M., Baar, A. W., Rutten, J. & Kleinhans, M. G. Bank pull or bar push: what drives scroll-bar formation in meandering rivers? Geology 42, 319–322 (2014).
Wu, C. et al. Lateral migration dynamics and bank erodibility of the lowermost Mississippi River. In Proc. AGU Fall Meeting EP52A-05 (American Geophysical Union, 2022).
Dong, T. Y. et al. Roles of bank material in setting bankfull hydraulic geometry as informed by the Selenga River delta, Russia. Water Resour. Res. 55, 827–846 (2019).
Anderson, J. B. et al. Recycling sediments between source and sink during a eustatic cycle: systems of late Quaternary northwestern Gulf of Mexico Basin. Earth Sci. Rev. 153, 111–138 (2016).
Simms, A. R., Anderson, J. B., Taha, Z. P. & Rodriguez, A. B. in Incised Valleys in Time and Space Vol. 85 (eds Dalrymple, R. W. et al.) (SEPM Society for Sedimentary Geology, 2006); https://doi.org/10.2110/pec.06.85.0117
Guerit, L., Foreman, B. Z., Chen, C., Paola, C. & Castelltort, S. Autogenic delta progradation during sea-level rise within incised valleys. Geology 49, 273–277 (2020).
van Dijk, W. M., van de Lageweg, W. I. & Kleinhans, M. G. Formation of a cohesive floodplain in a dynamic experimental meandering river. Earth Surf. Process. Landf. 38, 1550–1565 (2013).
van Dijk, W. M., van de Lageweg, W. I. & Kleinhans, M. G. Experimental meandering river with chute cutoffs. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2011JF002314 (2012).
Naito, K. & Parker, G. Can bankfull discharge and bankfull channel characteristics of an alluvial meandering river be cospecified from a flow duration curve? J. Geophys. Res. Earth Surf. 124, 2381–2401 (2019).
Parker, G. et al. A new framework for modeling the migration of meandering rivers. Earth Surf. Process. Landf. 36, 70–86 (2011).
Nittrouer, J. A., Shaw, J., Lamb, M. P. & Mohrig, D. Spatial and temporal trends for water-flow velocity and bed-material sediment transport in the lower Mississippi River. Geol. Soc. Am. Bull. 124, 400–414 (2012).
Barefoot, E. A., Nittrouer, J. A. & Straub, K. M. Non-monotonic floodplain responses to changes in flooding intensity. J. Geophys. Res. Earth Surf. 126, e2021JF006310 (2021).
Han, J. & Kim, W. Linking levee-building processes with channel avulsion: geomorphic analysis for assessing avulsion frequency and channel reoccupation. Earth Surf. Dynam. 10, 743–759 (2022).
Syvitski, J. P. M. & Milliman, J. D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 115, 1–19 (2007).
Hansford, M. R., Plink-Björklund, P. & Jones, E. R. Global quantitative analyses of river discharge variability and hydrograph shape with respect to climate types. Earth Sci. Rev. 200, 102977 (2020).
Stucky de Quay, G., Goudge, T. A., Kite, E. S., Fassett, C. I. & Guzewich, S. D. Limits on runoff episode duration for early Mars: integrating lake hydrology and climate models. Geophys. Res. Lett. 48, e2021GL093523 (2021).
Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 6, 508–513 (2016).
Bouwer, L. M., Vermaat, J. E. & Aerts, J. C. J. H. Regional sensitivities of mean and peak river discharge to climate variability in Europe. J. Geophys. Res. Atmos. https://doi.org/10.1029/2008JD010301 (2008).
Barefoot, E. A. et al. Evidence for enhanced fluvial channel mobility and fine sediment export due to precipitation seasonality during the Paleocene–Eocene thermal maximum. Geology https://doi.org/10.1130/G49149.1 (2021).
Nanditha, J. S. et al. The Pakistan flood of August 2022: causes and implications. Earths Future 11, e2022EF003230 (2023).
Paola, C. & Mohrig, D. Palaeohydraulics revisited: palaeoslope estimation in coarse-grained braided rivers. Basin Res. 8, 243–254 (1996).
Ikeda, S., Parker, G. & Sawai, K. Bend theory of river meanders. Part 1. Linear development. J. Fluid Mech. 112, 363–377 (1981).
Sun, T., Meakin, P., Jøssang, T. & Schwarz, K. A simulation model for meandering rivers. Water Resour. Res. 32, 2937–2954 (1996).
Larsen, E. W. Mechanics and Modeling of River Meander Migration. PhD thesis, Univ. California, Berkeley (1995).
Moran, K. E., Nittrouer, J. A., Perillo, M. M., Lorenzo‐Trueba, J. & Anderson, J. B. Morphodynamic modeling of fluvial channel fill and avulsion time scales during early Holocene transgression, as substantiated by the incised valley stratigraphy of the Trinity River, Texas. J. Geophys. Res. Earth Surf. 122, 215–234 (2017).
Hobo, N., Makaske, B., Wallinga, J. & Middelkoop, H. Reconstruction of eroded and deposited sediment volumes of the embanked River Waal, the Netherlands, for the period ad 1631–present. Earth Surf. Process. Landf. 39, 1301–1318 (2014).
Woolderink, H. A. G., Cohen, K. M., Kasse, C., Kleinhans, M. G. & Van Balen, R. T. Patterns in river channel sinuosity of the Meuse, Roer and Rhine rivers in the Lower Rhine Embayment rift-system, are they tectonically forced? Geomorphology 375, 107550 (2021).
Gensen, M. R. A., Warmink, J. J., Huthoff, F. & Hulscher, S. J. M. H. Feedback mechanism in bifurcating river systems: the effect on water-level sensitivity. Water 12, 1915 (2020).
Pol, J. Hydrograph Shape Variability on the River Meuse. MSc thesis, Delft Univ. Technology (2014).
Berendsen, H. J. A. & Stouthamer, E. Paleogeographic evolution and avulsion history of the Holocene Rhine–Meuse delta, The Netherlands. Neth. J. Geosci. 81, 97–112 (2002).
Berendsen, H. J. A. & Stouthamer, E. Late Weichselian and Holocene palaeogeography of the Rhine–Meuse delta, The Netherlands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 161, 311–335 (2000).
Giosan, L. et al. Young Danube delta documents stable Black Sea level since the middle Holocene: morphodynamic, paleogeographic, and archaeological implications. Geology 34, 757–760 (2006).
Fisk, H. N. Geological Investigation of the Alluvial Valley of the Lower Mississippi River (Mississippi River Commission, US Army Corps of Engineers, 1944).
Chamberlain, E. L., Törnqvist, T. E., Shen, Z., Mauz, B. & Wallinga, J. Anatomy of Mississippi Delta growth and its implications for coastal restoration. Sci. Adv. 4, eaar4740 (2018).
Heitmuller, F. T. Channel adjustments to historical disturbances along the lower Brazos and Sabine Rivers, south-central USA. Geomorphology 204, 382–398 (2014).
Strom, K. & Rouhnia, M. Suspended Sediment Sampling and Annual Sediment Yield on the Lower Brazos River (Texas Water Development Board, 2013); https://www.twdb.texas.gov/publications/reports/contracted_reports/doc/1000011085_1100011340_brazossediment.pdf
Swartz, J. M., Goudge, T. A. & Mohrig, D. C. Quantifying coastal fluvial morphodynamics over the last 100 years on the lower Rio Grande, USA and Mexico. J. Geophys. Res. Earth Surf. 125, e2019JF005443 (2020).
Ijaz, M. W., Mahar, R. B., Ansari, K., Siyal, A. A. & Anjum, M. N. Integrated assessment of contemporary hydro-geomorphologic evolution of the Indus River Estuary, Pakistan in context to regulated fluvial regimes. Estuar. Coast. Shelf Sci. 236, 106657 (2020).
Syvitski, J. P. M. et al. Anthropocene metamorphosis of the Indus Delta and lower floodplain. Anthropocene 3, 24–35 (2013).
Park, E., Lim, J., Ho, H. L., Herrin, J. & Chitwatkulsiri, D. Source-to-sink sediment fluxes and budget in the Chao Phraya River, Thailand: a multi-scale analysis based on the national dataset. J. Hydrol. 594, 125643 (2021).
Tingsanchali, T. & Kumar Lal, N. Subsidence of flood waves in overbank flow areas. J. Hydraul. Res. 26, 585–597 (1988).
Tanabe, S. et al. Stratigraphy and Holocene evolution of the mud-dominated Chao Phraya delta, Thailand. Quat. Sci. Rev. 22, 789–807 (2003).
Meade, R. H. & Moody, J. A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process. 24, 35–49 (2010).
Garvin, M. G. Late Quaternary Geochronologic, Stratigraphic, and Sedimentologic Framework of the Trinity River Incised Valley: East Texas Coast. MSc thesis, Louisiana State Univ. (2008).
Erkens, G., Cohen, K. M., Gouw, M. J. P., Middelkoop, H. & Hoek, W. Z. in Sediment Dynamics and the Hydromorphology of Fluvial Systems (eds Rowan, J. S. et al.) IAHS Publication Number 306; 406–415 (International Association of Hydrological Sciences, 2006).
Toonen, W. H. J. Flood frequency analysis and discussion of non-stationarity of the Lower Rhine flooding regime (ad 1350–2011): using discharge data, water level measurements, and historical records. J. Hydrol. 528, 490–502 (2015).
Panin, N. & Jipa, D. Danube river sediment input and its interaction with the north-western Black Sea. Estuar. Coast. Shelf Sci. 54, 551–562 (2002).
Cox, J. R. et al. Anthropogenic effects on the contemporary sediment budget of the lower Rhine–Meuse Delta channel network. Earths Future 9, e2020EF001869 (2021).
Garzanti, E., Andò, S., Padoan, M., Vezzoli, G. & El Kammar, A. The modern Nile sediment system: processes and products. Quat. Sci. Rev. 130, 9–56 (2015).
Wohl, E. E. in Large Rivers: Geomorphology and Management (ed. Gupta, A.) 29–44 (Wiley, 2007); https://doi.org/10.1002/9780470723722.ch3
Milliman, J. D. & Syvitski, J. P. M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).
Heitmuller, F. T. & Greene, L. E. Historical Channel Adjustment and Estimates of Selected Hydraulic Values in the Lower Sabine River and Lower Brazos River Basins, Texas and Louisiana. Scientific Investigations Report 2009-5174 (US Geological Survey, 2009); https://pubs.er.usgs.gov/publication/sir20095174
Inam, A. et al. in Large Rivers: Geomorphology and Management (ed. Gupta, A.) 333–346 (Wiley, 2007); https://doi.org/10.1002/9780470723722.ch16
Acknowledgements
Funding for this project was provided by the National Research Foundation of Korea (NRF-2017R1A6A1A07015374) to W.K., Yonsei University (Post-Doctoral Researcher Supporting Program, Yonsei University Research Fund #2021-12-0018) to C.W. and the Excellent Young Scientist Fund (Overseas, 2021) from NSFC to H.M.
Author information
Authors and Affiliations
Contributions
C.W. and W.K. conceived the paper. C.W., B.T.C., R.H. and A.M. collected the data. All authors contributed to the analysis, writing, reviewing and editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks Joshua Ahmed and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Spatial trend in channel sinuosity Ω of variable-sinuosity Earth rivers.
Dots are sinuosity measurements of individual bends and the black solid lines are binned averages with a bin size of 0.1La, where La is the avulsion length.
Extended Data Fig. 2 Spatial trend in channel sinuosity Ω of constant-sinuosity Earth rivers.
Dots are sinuosity measurements of individual bends and the black solid lines are binned averages with a bin size of 0.1La, where La is the avulsion length.
Extended Data Fig. 3 Planform patterns of fluvial sandstone ridges of 6 Martian fluvial-deltaic systems (a-c and g-i) and their associated spatial trends in sinuosity Ω (d-f and j-l).
Dots are sinuosity measurements of individual bends and the black solid lines are binned averages with a bin size of 0.1La, where La is the avulsion length each marked by a dashed line. Projected distance PD of sinuosity measurements is normalized by La. Dashed line marks the avulsion location.
Extended Data Fig. 4 Historical images, maps and satellite images of the Brazos, Colorado, Indus, Trinity, and Mississippi rivers.
River centerlines were traced to calculate lateral channel migration rates. Credit: Brazos, Colorado and Trinity, Texas Natural Resources Information System; Indus, Landsat Copernicus via Google Earth; Mississippi and Lafourche, US Army Corps of Engineers.
Extended Data Fig. 5 Satellite images and associated river centerlines for the Neches, Sabine, Suwannee, Tombigbee, and Yana rivers.
Credit: Google Earth (third-party data providers are listed on the image).
Extended Data Fig. 6 Satellite images and associated river centerlines for the Alabama, Apalachicola, Don, Kobuk, and Mackenzie rivers.
Credit: Google Earth (third-party data providers are listed on the image).
Extended Data Fig. 7 Correlation between sediment supply and channel lateral migration rate.
Blue dots and green diamonds represent the average measured lateral migration rate for variable- and constant-sinuosity river groups, respectively. Error bar denotes the measured maximum and minimum lateral migration rate for the natural rivers. The black line represents the regression fit. Sample size for each data point corresponds to the number of migration rate measurements based on traced centerlines at different times (Extended Data Figs. 4–6).
Supplementary information
Supplementary Information
Supplementary Fig. 1, Table 1 and discussion.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wu, C., Kim, W., Herring, R. et al. Lowland river sinuosity on Earth and Mars set by the pace of meandering and avulsion. Nat. Geosci. 16, 747–753 (2023). https://doi.org/10.1038/s41561-023-01231-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-023-01231-1