Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isotopic constraints on lightning as a source of fixed nitrogen in Earth’s early biosphere

Abstract

Bioavailable nitrogen is thought to be a requirement for the origin and sustenance of life. Before the onset of biological nitrogen fixation, abiotic pathways to fix atmospheric N2 must have been prominent to provide bioavailable nitrogen to Earth’s earliest ecosystems. Lightning has been shown to produce fixed nitrogen as nitrite and nitrate in both modern atmospheres dominated by N2 and O2 and atmospheres dominated by N2 and CO2 analogous to the Archaean Earth. However, a better understanding of the isotopic fingerprints of lightning-generated fixed nitrogen is needed to assess the role of this process on early Earth. Here we present results from spark discharge experiments in N2−CO2 and N2−O2 gas mixtures. Our experiments suggest that lightning-driven nitrogen fixation may have been similarly efficient in the Archaean atmosphere, compared with modern times. Measurements of the isotopic ratio (δ15N) of the discharge-produced nitrite and nitrate in solution show very low values of −6‰ to −15‰ after equilibration with the gas phase with a calculated endmember composition of −17‰. These results are much lower than most δ15N values documented from the sedimentary rock record, which supports the development of biological nitrogen fixation earlier than 3.2 billion years ago. However, some Paleoarchean records (3.7 billion years ago) may be consistent with lightning-derived nitrogen input, highlighting the potential role of this process for the earliest ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measurements of δ15N in sedimentary rocks over geologic time, separated by metamorphic grade.
Fig. 2: Schematic of experimental set-up of the discharge experiment.
Fig. 3: Chemical pathways during spark discharge in N2−O2 and N2−CO2 gas mixtures.
Fig. 4: Energy yield of fixed nitrogen products.
Fig. 5: Nitrogen isotope ratios of aqueous nitrate and nitrite.

Similar content being viewed by others

Data availability

A full methods section, a detailed description of the chemical processes, the description of additional experiments and a machine-readable table of the data presented in this work are available online. Access the data at https://doi.org/10.5285/81dfa4de-5a47-479f-8de8-15e5ef398072. Source data are provided with this paper.

References

  1. Postgate, J. R. Nitrogen Fixation (Cambridge Univ. Press, 1998).

  2. Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Phil. Trans. R. Soc. B 368, 20130164 (2013).

  3. Beasley, W., Uman, M. A. & Rustan Jr, P. L. Electric fields preceding cloud-to-ground lightning flashes. J. Geophys. Res. Oceans 87, 4883–4902 (1982).

    Google Scholar 

  4. Cavendish, H. On the conversion of a mixture of dephlogisticated and phlogisticated air into nitrous acid, by the electric spark. Phil. Trans. R. Soc. Lond. 78, 261–276 (1788).

    Google Scholar 

  5. Yung, Y. L. & McElroy, M. B. Fixation of nitrogen in the prebiotic atmosphere. Science 203, 1002–1004 (1979).

    Google Scholar 

  6. Nna Mvondo, D., Navarro-González, R., McKay, C. P., Coll, P. & Raulin, F. Production of nitrogen oxides by lightning and coronae discharges in simulated early Earth, Venus and Mars environments. Adv. Space Res. 27, 217–223 (2001).

    Google Scholar 

  7. Navarro-González, R., McKay, C. P. & Mvondo, D. N. A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412, 61–64 (2001).

    Google Scholar 

  8. Summers, D. P. & Khare, B. Nitrogen fixation on early Mars and other terrestrial planets: experimental demonstration of abiotic fixation reactions to nitrite and nitrate. Astrobiology 7, 333–341 (2007).

    Google Scholar 

  9. Kasting, J. F. & Walker, J. C. G. Limits on oxygen concentration in the prebiological atmosphere and the rate of abiotic fixation of nitrogen. J. Geophys. Res. 86, 1147–1158 (1981).

  10. Wong, M. L., Charnay, B. D., Gao, P., Yung, Y. L. & Russell, M. J. Nitrogen oxides in early Earth’s atmosphere as electron acceptors for life’s emergence. Astrobiology 17, 975–983 (2017).

    Google Scholar 

  11. Adams, D. et al. Nitrogen fixation at early Mars. Astrobiology 21, 968–980 (2021).

    Google Scholar 

  12. Hoering, T. The isotopic composition of the ammonia and the nitrate ion in rain. Geochim. Cosmochim. Acta 12, 97–102 (1957).

    Google Scholar 

  13. Moore, H. The isotopic composition of ammonia, nitrogen dioxide and nitrate in the atmosphere. Atmos. Environ. 11, 1239–1243 (1977).

    Google Scholar 

  14. Shi, G. et al. Using stable isotopes to distinguish atmospheric nitrate production and its contribution to the surface ocean across hemispheres. Earth Planet. Sci. Lett. 564, 116914 (2021).

    Google Scholar 

  15. Stüeken, E. E., Kipp, M. A., Koehler, M. C. & Buick, R. The evolution of Earth’s biogeochemical nitrogen cycle. Earth Sci. Rev. 160, 220–239 (2016).

    Google Scholar 

  16. Stüeken, E. E., Boocock, T., Szilas, K., Mikhail, S. & Gardiner, N. J. Reconstructing nitrogen sources to Earth’s earliest biosphere at 3.7 Ga. Front. Earth Sci. 9, 675726 (2021).

    Google Scholar 

  17. Yang, J. et al. Ammonium availability in the late Archaean nitrogen cycle. Nat. Geosci. 12, 553–557 (2019).

    Google Scholar 

  18. Marty, B., Zimmermann, L., Pujol, M., Burgess, R. & Philippot, P. Nitrogen isotopic composition and sensity of the Archean atmosphere. Science 342, 101–104 (2013).

    Google Scholar 

  19. Parker, E.T. et al. Conducting Miller–Urey Experiments. J. Vis. Exp. https://doi.org/10.3791/51039 (2014).

  20. Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, 1420 (2020).

    Google Scholar 

  21. Miller, D. N. Mass transfer in nitric acid absorption. AIChE J. 33, 1351–1358 (1987).

    Google Scholar 

  22. Cleaves, H. J., Chalmers, J. H., Lazcano, A., Miller, S. L. & Bada, J. L. A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig. Life Evol. Biosph. 38, 105–115 (2008).

    Google Scholar 

  23. Christian, H. J. et al. Global frequency and distribution of lightning as observed from space by the optical transient detector. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002JD002347 (2003).

  24. Price, C., Penner, J. & Prather, M. NOx from lightning: 1. Global distribution based on lightning physics. J. Geophys. Res. Atmos. 102, 5929–5941 (1997).

    Google Scholar 

  25. Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).

    Google Scholar 

  26. Wang, Y., DeSilva, A. W., Goldenbaum, G. C. & Dickerson, R. R. Nitric oxide production by simulated lightning: dependence on current, energy, and pressure. J. Geophys. Res. Atmos. 103, 19149–19159 (1998).

    Google Scholar 

  27. Cook, D. R., Liaw, Y. P., Sisterson, D. L. & Miller, N. L. Production of nitrogen oxides by a large spark generator. J. Geophys. Res. Atmos. 105, 7103–7110 (2000).

    Google Scholar 

  28. Schumann, U. & Huntrieser, H. The global lightning-induced nitrogen oxides source. Atmos. Chem. Phys. 7, 3823–3907 (2007).

    Google Scholar 

  29. Uman, M. A. & Rakov, V. A. in Lightning: Physics and Effects (eds Uman, M. A. & Rakov, V. A.) 507–527 (Cambridge Univ. Press, 2003); https://doi.org/10.1017/CBO9781107340886.016

  30. An, T. et al. The radius and temperature distribution along radial direction of lightning plasma channel. Phys. Plasmas 26, 13506 (2019).

    Google Scholar 

  31. Uman, M. A. & Voshall, R. E. Time interval between lightning strokes and the initiation of dart leaders. J. Geophys. Res. 73, 497–506 (1968).

    Google Scholar 

  32. Picone, J. M., Boris, J. P., Greig, J. R., Raleigh, M. & Fernsler, R. F. Convective cooling of lightning channels. J. Atmos. Sci. 38, 2056–2062 (1981).

    Google Scholar 

  33. National Research Council The Earth’s Electrical Environment (National Academies Press, 1986); https://doi.org/10.17226/898

  34. Zel’dovich, Y. B. & Raizer, Y. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, 1966); https://encore.st-andrews.ac.uk/iii/encore/record/C__Rb1169708

  35. Tosca, N. J., Jiang, C. Z., Rasmussen, B. & Muhling, J. Products of the iron cycle on the early Earth. Free Radic. Biol. Med. 140, 138–153 (2019).

    Google Scholar 

  36. Summers, D. P. & Chang, S. Prebiotic ammonia from reduction of nitrite by iron (ii) on the early Earth. Nature 365, 630–633 (1993).

    Google Scholar 

  37. Sigman, D. M. et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73, 4145–4153 (2001).

    Google Scholar 

  38. Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K. & Hilkert, A. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 74, 4905–4912 (2002).

    Google Scholar 

  39. Walters, W. W. & Michalski, G. Theoretical calculation of nitrogen isotope equilibrium exchange fractionation factors for various NOy molecules. Geochim. Cosmochim. Acta 164, 284–297 (2015).

    Google Scholar 

  40. Kuga, M. et al. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles. Earth Planet. Sci. Lett. 393, 2–13 (2014).

    Google Scholar 

  41. Li, J., Zhang, X., Orlando, J., Tyndall, G. & Michalski, G. Quantifying the nitrogen isotope effects during photochemical equilibrium between NO and NO2: implications for δ15N in tropospheric reactive nitrogen. Atmos. Chem. Phys. 20, 9805–9819 (2020).

    Google Scholar 

  42. Walters, W. W., Simonini, D. S. & Michalski, G. Nitrogen isotope exchange between NO and NO2 and its implications for δ15N variations in tropospheric NOx and atmospheric nitrate. Geophys. Res. Lett. 43, 440–448 (2016).

    Google Scholar 

  43. Goldblatt, C. et al. Nitrogen-enhanced greenhouse warming on early Earth. Nat. Geosci. 2, 891–896 (2009).

    Google Scholar 

  44. Nijdam, S., Teunissen, J. & Ebert, U. The physics of streamer discharge phenomena. Plasma Sources Sci. Technol. 29, 103001 (2020).

    Google Scholar 

  45. Rimmer, P. B. & Helling, C. A chemical kinetics network for lightning and life in planetary atmospheres. Astrophys. J. Suppl. Ser. 224, 9 (2016).

    Google Scholar 

  46. Rimmer, P. B. & Rugheimer, S. Hydrogen cyanide in nitrogen-rich atmospheres of rocky exoplanets. Icarus 329, 124–131 (2019).

    Google Scholar 

  47. Rimmer, P. B. & Helling, C. Erratum: a chemical kinetics network for lightning and life in planetary atmospheres. Astrophys. J. Suppl. Ser. 245, 20 (2019).

    Google Scholar 

  48. Thomazo, C. & Papineau, D. Biogeochemical cycling of nitrogen on the early Earth. Elements 9, 345–351 (2013).

    Google Scholar 

  49. Ranjan, S., Todd, Z. R., Rimmer, P. B., Sasselov, D. D. & Babbin, A. R. Nitrogen oxide concentrations in natural waters on early Earth. Geochem. Geophys. Geosyst. 20, 2021–2039 (2019).

    Google Scholar 

  50. Tian, F., Kasting, J. F. & Zahnle, K. Revisiting HCN formation in Earth’s early atmosphere. Earth Planet. Sci. Lett. 308, 417–423 (2011).

    Google Scholar 

  51. Vinatier, S., Bézard, B. & Nixon, C. A. The Titan 14N/15N and 12C/13C isotopic ratios in HCN from Cassini/CIRS. Icarus 191, 712–721 (2007).

    Google Scholar 

  52. Niemann, H. B. et al. Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini–Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res. Planets https://doi.org/10.1029/2010JE003659 (2010).

  53. Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    Google Scholar 

  54. Stern, J. C. et al. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars. Proc. Natl Acad. Sci. USA 112, 4245–4250 (2015).

    Google Scholar 

  55. Sutter, B. et al. Evolved gas analyses of sedimentary rocks and eolian sediment in Gale crater, Mars: results of the Curiosity rover’s sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune. J. Geophys. Res. Planets 122, 2574–2609 (2017).

    Google Scholar 

  56. Cardinal, D., Alleman, L. Y., de Jong, J., Ziegler, K. & André, L. Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. J. Anal. At. Spectrom. 18, 213–218 (2003).

    Google Scholar 

  57. NIST Mass Spectrometry Data Center & Wallace, W. E. NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, 2023); https://doi.org/10.18434/T4D303

  58. Levine, J. S., Hughes, R. E., Chameides, W. L. & Howell, W. E. N2O and CO production by electric discharge: atmospheric implications. Geophys. Res. Lett. 6, 557–559 (1979).

    Google Scholar 

  59. Hill, R. D., Rinker, R. G. & Coucouvinos, A. Nitrous oxide production by lightning. J. Geophys. Res. Atmos. 89, 1411–1421 (1984).

    Google Scholar 

  60. Schnetger, B. & Lehners, C. Determination of nitrate plus nitrite in small volume marine water samples using vanadium(iii)chloride as a reduction agent. Mar. Chem. 160, 91–98 (2014).

    Google Scholar 

  61. Solórzano, L. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14, 799–801 (1969).

  62. Böhlke, J. K., Gwinn, C. J. & Coplen, T. B. New reference materials for nitrogen-isotope-ratio measurements. Geostand. Newsl. 17, 159–164 (1993).

    Google Scholar 

  63. Böhlke, J. K. & Coplen, T. B. Interlaboratory Comparison of Reference Materials for Nitrogen-Isotope-Ratio Measurements (USGS, 1995); http://pubs.er.usgs.gov/publication/70188273

  64. Böhlke, J. K., Mroczkowski, S. J. & Coplen, T. B. Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate–water equilibration. Rapid Commun. Mass Spectrom. 17, 1835–1846 (2003).

    Google Scholar 

  65. Li, L., Lollar, B. S., Li, H., Wortmann, U. G. & Lacrampe-Couloume, G. Ammonium stability and nitrogen isotope fractionations for NH4+–NH3(aq)–NH3(gas) systems at 20–70C and pH of 2–13: applications to habitability and nitrogen cycling in low-temperature hydrothermal systems. Geochim. Cosmochim. Acta 84, 280–296 (2012).

    Google Scholar 

  66. Woitke, P. et al. Equilibrium chemistry down to 100 K—impact of silicates and phyllosilicates on the carbon to oxygen ratio. Astron. Astrophys. 614, A1 (2018).

Download references

Acknowledgements

We thank H. Cleaves for technical advice on the experimental set-up, P. B. Rimmer and the members of the Leverhulme Centre for Life in the Universe (Cambridge) for helpful discussions of our results, and B. K. D. Pearce for comments on our paper. P.B. acknowledges a St Leonard’s Interdisciplinary Doctoral Scholarship from the University of St Andrews. E.E.S. acknowledges funding from a Royal Society research grant (RGS\R1\211184) and from a NERC Frontiers grant (NE/V010824/1). C.H. is part of the CHAMELEON MC ITN EJD, which received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement number 860470. To meet institutional and research funder open access requirements, any accepted paper arising shall be open access under a Creative Commons Attribution (CC BY) reuse licence with zero embargo.

Author information

Authors and Affiliations

Authors

Contributions

E.E.S. and C.H. conceived the project; E.E.S. and P.B. built the experimental set-up; P.B., L.R. and Y.P. carried out the experiments; P.B., L.R., Y.P. and W.W. performed the analyses; M.C. provided analytical support; P.B., E.E.S., C.H. and W.W. analysed the data; P.B. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to Patrick Barth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Linda Godfrey, Jennifer Stern, Laurence Yeung and Ben Pearce for their contribution to the peer review of this work. Primary Handling Editors: Tamara Goldin and Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Table 1 and Discussion.

Supplementary Data 1

Figs. 2 and 3.

Source data

Source Data Fig. 4

Selection of data used to produce Fig. 4.

Source Data Fig. 5

Selection of data used to produce Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barth, P., Stüeken, E.E., Helling, C. et al. Isotopic constraints on lightning as a source of fixed nitrogen in Earth’s early biosphere. Nat. Geosci. 16, 478–484 (2023). https://doi.org/10.1038/s41561-023-01187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01187-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing