Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arctic mercury flux increased through the Last Glacial Termination with a warming climate

Abstract

Mercury is a pollutant of global concern, especially in the Arctic, where high levels are found in biota despite its remote location. Mercury is transported to the Arctic via atmospheric, oceanic and riverine long-range pathways, where it accumulates in aquatic and terrestrial ecosystems. While present-day mercury deposition in the Arctic from natural and anthropogenic emissions is extensively studied, the control of past climate changes on natural mercury variability remains unknown. Here we present an Arctic mercury record covering the Last Glacial Termination to the early Holocene epoch (15.7–9.0 thousand years before 2000 ce), collected as part of the East Greenland Ice-Core Project. We find a threefold increase in mercury depositional fluxes from the Last Glacial Termination into the early Holocene, which coincided with abrupt regional climate warming. Atmospheric chemistry modelling, combined with available sea-ice proxies, indicates that oceanic mercury evaporation and atmospheric bromine drove the increase in mercury flux during this climatic transition. Our results suggest that environmental changes associated with climate warming may contribute to increasing mercury levels in Arctic ecosystems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EGRIP Hg, Br, Na and Ca fluxes, Hg concentration, accumulation profile and NGRIP δ18O for the period 9.0–15.7 kyr b2k.
Fig. 2: EGRIP Hg and proxies of sea-ice variability.
Fig. 3: Schematic representation of the differences in mercury emission, transport, chemistry and deposition during the LGT and the early Holocene.

Similar content being viewed by others

Data availability

EGRIP ice-core data are available in the Zenodo dataset (https://zenodo.org/record/7754371) and as Supplementary Data to this article.

Code availability

All files related to the box model are available at the following link: https://github.com/deliasegato1/box_model_EGRIP_Hg.git.

References

  1. Dastoor, A. et al. Arctic mercury cycling. Nat. Rev. Earth Environ. 3, 270–286 (2022).

    Article  Google Scholar 

  2. Chételat, J. et al. Climate change and mercury in the Arctic: abiotic interactions. Sci. Total Environ. 824, 153715 (2022).

    Article  Google Scholar 

  3. AMAP Assessment 2021: Mercury in the Arctic (AMAP, 2021).

  4. Amos, H. M. et al. Observational and modeling constraints on global anthropogenic enrichment of mercury. Environ. Sci. Technol. 49, 4036–4047 (2015).

    Article  Google Scholar 

  5. Krabbenhoft, D. P. & Sunderland, E. M. Global change and mercury. Science 341, 1457–1458 (2013).

    Article  Google Scholar 

  6. Amos, H. M., Jacob, D. J., Streets, D. G. & Sunderland, E. M. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Glob. Biogeochem. Cycles 27, 410–421 (2013).

    Article  Google Scholar 

  7. Outridge, P. M., Mason, R. P., Wang, F., Guerrero, S. & Heimbürger-Boavida, L. E. Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 52, 11466–11477 (2018).

    Google Scholar 

  8. Obrist, D. et al. A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use. Ambio 47, 116–140 (2018).

    Article  Google Scholar 

  9. Mason, R. P. & Sheu, G.-R. Role of the ocean in the global mercury cycle. Glob. Biogeochem. Cycles 16, 40-1 (2002).

    Article  Google Scholar 

  10. Zaferani, S., Pérez-Rodríguez, M. & Biester, H. Diatom ooze—a large marine mercury sink. Science 361, 797–800 (2018).

    Article  Google Scholar 

  11. Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).

    Article  Google Scholar 

  12. Saiz-Lopez, A. et al. Photoreduction of gaseous oxidized mercury changes global atmospheric mercury speciation, transport and deposition. Nat. Commun. 9, 4796 (2018).

    Article  Google Scholar 

  13. Steffen, A. et al. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. Atmos. Chem. Phys. 8, 1445–1482 (2008).

    Article  Google Scholar 

  14. Wang, K. et al. Subsurface seawater methylmercury maximum explains biotic mercury concentrations in the Canadian Arctic. Sci. Rep. 8, 14465 (2018).

    Article  Google Scholar 

  15. Kang, S. et al. Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau. Environ. Sci. Technol. 50, 2859–2869 (2016).

    Article  Google Scholar 

  16. Cooke, C. A., Martínez-Cortizas, A., Bindler, R. & Sexauer Gustin, M. Environmental archives of atmospheric Hg deposition—a review. Sci. Total Environ. 709, 134800 (2020).

    Article  Google Scholar 

  17. Jitaru, P. et al. Atmospheric depletion of mercury over Antarctica during glacial periods. Nat. Geosci. 2, 505–508 (2009).

    Article  Google Scholar 

  18. Pérez-Rodríguez, M., Horák-Terra, I., Rodríguez-Lado, L., Aboal, J. R. & Martínez Cortizas, A. Long-term (57 ka) controls on mercury accumulation in the Southern Hemisphere reconstructed using a peat record from Pinheiro Mire (Minas Gerais, Brazil). Environ. Sci. Technol. 49, 1356–1364 (2015).

    Article  Google Scholar 

  19. Pérez-Rodríguez, M. et al. The role of climate: 71 ka of atmospheric mercury deposition in the Southern Hemisphere recorded by Rano Aroi Mire, Easter Island (Chile). Geosciences 8, 374 (2018).

    Article  Google Scholar 

  20. Schneider, L., Cooke, C. A., Stansell, N. D. & Haberle, S. G. Effects of climate variability on mercury deposition during the Older Dryas and Younger Dryas in the Venezuelan Andes. J. Paleolimnol. 63, 211–224 (2020).

    Article  Google Scholar 

  21. Roos-Barraclough, F., Martinez-Cortizas, A., García-Rodeja, E. & Shotyk, W. A 14 500 year record of the accumulation of atmospheric mercury in peat: volcanic signals, anthropogenic infuences and a correlation to bromine accumulation. Earth Planet. Sci. 202, 435–451 (2002).

    Article  Google Scholar 

  22. Zheng, J. Archives of total mercury reconstructed with ice and snow from Greenland and the Canadian High Arctic. Sci. Total Environ. 509–510, 133–144 (2015).

    Article  Google Scholar 

  23. Pérez-Rodríguez, M. et al. Industrial-era lead and mercury contamination in southern Greenland implicates North American sources. Sci. Total Environ. 613–614, 919–930 (2018).

    Article  Google Scholar 

  24. Shotyk, W. et al. Anthropogenic contributions to atmospheric Hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C ‘bomb pulse curve’. Geochim. Cosmochim. Acta 67, 3991–4011 (2003).

    Article  Google Scholar 

  25. Zdanowicz, C. et al. Pre-industrial and recent (1970–2010) atmospheric deposition of sulfate and mercury in snow on southern Baffin Island, Arctic Canada. Sci. Total Environ. 509–510, 104–114 (2015).

    Article  Google Scholar 

  26. Cooke, C. A., Wolfe, A. P., Michelutti, N., Balcom, P. H. & Briner, J. P. A Holocene perspective on algal mercury scavenging to sediments of an Arctic Lake. Environ. Sci. Technol. 46, 7135–7141 (2012).

    Article  Google Scholar 

  27. Müller, J. & Stein, R. High-resolution record of late glacial and deglacial sea ice changes in Fram Strait corroborates ice–ocean interactions during abrupt climate shifts. Earth Planet. Sci. Lett. 403, 446–455 (2014).

    Article  Google Scholar 

  28. Werner, K. et al. Holocene sea subsurface and surface water masses in the Fram Strait—comparisons of temperature and sea-ice reconstructions. Quat. Sci. Rev. 147, 194–209 (2016).

    Article  Google Scholar 

  29. Gibb, O. T., Steinhauer, S., Fréchette, B., de Vernal, A. & Hillaire-Marcel, C. Diachronous evolution of sea surface conditions in the Labrador Sea and Baffin Bay since the last deglaciation. Holocene 25, 1882–1897 (2015).

    Article  Google Scholar 

  30. Hoff, U., Rasmussen, T. L., Stein, R., Ezat, M. M. & Fahl, K. Sea ice and millennial-scale climate variability in the Nordic Seas 90 kyr ago to present. Nat. Commun. 7, 12247 (2016).

    Article  Google Scholar 

  31. Spolaor, A. et al. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core. Sci. Rep. 6, 33925 (2016).

    Article  Google Scholar 

  32. Kindler, P. et al. Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Climate 10, 887–902 (2014).

    Google Scholar 

  33. Fischer, H., Ruth, U. & Ro, R. Glacial/interglacial changes in mineral dust and sea-salt records in polar ice cores: sources, transport, and deposition. Rev. Geophys. 45 (2007).

  34. Spolaor, A. et al. Halogen species record Antarctic sea ice extent over glacial–interglacial periods. Atmos. Chem. Phys. 13, 6623–6635 (2013).

    Article  Google Scholar 

  35. Vallelonga, P. et al. Sea-ice reconstructions from bromine and iodine in ice cores. Quat. Sci. Rev. 269, 107133 (2021).

    Article  Google Scholar 

  36. Saiz-Lopez, A. et al. Photochemistry of oxidized Hg(I) and Hg(ii) species suggests missing mercury oxidation in the troposphere. Proc. Natl Acad. Sci. USA 117, 30949–30956 (2020).

    Article  Google Scholar 

  37. Mason, R. P. & Sheu, G. Role of the ocean in the global mercury cycle.Glob. Biogeochem. Cycles 16, 1093 (2002).

    Article  Google Scholar 

  38. Ariya, P. A. et al. Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: a review and future directions. Chem. Rev. 115, 3760–3802 (2015).

    Article  Google Scholar 

  39. Soerensen, A. et al. A mass budget for mercury and methylmercury in the Arctic Ocean.Glob. Biogeochem. Cycles.30, 560–575 (2016).

    Article  Google Scholar 

  40. Dimento, B. P., Mason, R. P., Brooks, S. & Moore, C. The impact of sea ice on the air–sea exchange of mercury in the Arctic Ocean. Deep Sea Res. I 144, 28–38 (2019).

    Article  Google Scholar 

  41. Agather, A. M., Bowman, K. L., Lamborg, C. H. & Hammerschmidt, C. R. Distribution of mercury species in the Western Arctic Ocean (US GEOTRACES GN01). Mar. Chem. 216, 103686 (2019).

    Article  Google Scholar 

  42. Not, C. & Hillaire-Marcel, C. Enhanced sea-ice export from the Arctic during the Younger Dryas. Nat. Commun. 3, 647 (2012).

    Article  Google Scholar 

  43. Oksman, M. et al. Younger Dryas ice margin retreat triggered by ocean surface warming in central-eastern Baffin Bay. Nat. Commun. 8, 1017 (2017).

    Article  Google Scholar 

  44. Pienkowski, A. J. et al. Seasonal sea ice persisted through the Holocene Thermal Maximum at 80° N.Commun. Earth Environ. 2, 124 (2021).

    Article  Google Scholar 

  45. Briner, J. P. et al. Rate of mass loss from the Greenland Ice Sheet will exceed Holocene values this century. Nature 586, 70–74 (2020).

    Article  Google Scholar 

  46. Vandal, G. M., Fitzgerald, W. F., Boutron, C. F. & Candelone, J.-P. Variations in mercury deposition to Antarctica over the oast 34,000 years. Nature 362, 621–623 (1993).

    Article  Google Scholar 

  47. Amos, H. M. et al. Observational and modeling constraints on global anthropogenic enrichment of mercury. Environ. Sci. Technol. 49, 4036–4047 (2015).

    Article  Google Scholar 

  48. Faïn, X. et al. Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s. Proc. Natl Acad. Sci. USA 106, 16114–16119 (2009).

    Article  Google Scholar 

  49. Saiz-Lopez, A. & von Glasow, R. Reactive halogen chemistry in the troposphere. Chem. Soc. Rev. 41, 6448–6472 (2012).

    Article  Google Scholar 

  50. Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A. & von Glasow, R. Tropospheric halogen chemistry: sources, cycling, and impacts. Chem. Rev. 115, 4035–4062 (2015).

    Article  Google Scholar 

  51. Schüpbach, S. et al. Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene. Nat. Commun. 9, 1476 (2018).

    Article  Google Scholar 

  52. Overland, J. E. & Wang, M. When will the summer Arctic be nearly sea ice free? Geophys. Res. Lett. 40, 2097–2101 (2013).

    Article  Google Scholar 

  53. Yool, A., Popova, E. E. & Coward, A. C. Future change in ocean productivity: Is the Arctic the new Atlantic? J. Geophys. Res. Oceans 120, 7771–7790 (2015).

    Article  Google Scholar 

  54. Miller, G. H. et al. Arctic amplification: can the past constrain the future? Quat. Sci. Rev. 29, 1779–1790 (2010).

    Article  Google Scholar 

  55. Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    Article  Google Scholar 

  56. Gerber, T. A. et al. Upstream flow effects revealed in the EastGRIP ice core using Monte Carlo inversion of a two-dimensional ice-flow model. Cryosphere 15, 3655–3679 (2021).

    Article  Google Scholar 

  57. Parker, J. L. & Bloom, N. S. Preservation and storage techniques for low-level aqueous mercury speciation. Sci. Total Environ. 337, 253–263 (2005).

    Article  Google Scholar 

  58. Planchon, F. A. M. et al. Direct determination of mercury at the sub-picogram per gram level in polar snow and ice by ICP-SFMS. J. Anal. At. Spectrom. 19, 823–830 (2004).

    Article  Google Scholar 

  59. Spolaor, A. et al. Diurnal cycle of iodine, bromine, and mercury concentrations in Svalbard surface snow. Atmos. Chem. Phys. 19, 13325–13339 (2019).

    Article  Google Scholar 

  60. Mojtabavi, S. et al. A first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and Last Glacial Termination. Climate 16, 2359–2380 (2020).

    Google Scholar 

  61. Francés-Monerris, A. et al. Photodissociation mechanisms of major mercury(ii) species in the atmospheric chemical cycle of mercury. Angew. Chem. Int. Ed. 59, 7605–7610 (2020).

    Article  Google Scholar 

  62. Shah, V. et al. Improved mechanistic model of the atmospheric redox chemistry of mercury. Environ. Sci. Technol. 55, 14445–14456 (2021).

    Article  Google Scholar 

  63. Enrico, M. et al. Holocene atmospheric mercury levels reconstructed from peat bog mercury stable isotopes. Environ. Sci. Technol. 51, 5899–5906 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

EGRIP is directed and organized by the Centre for Ice and Climate at the Niels Bohr Institute, University of Copenhagen. It is supported by funding agencies and institutions in Denmark (A. P. Møller Foundation, University of Copenhagen), USA (US National Science Foundation, Office of Polar Programs), Germany (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research), Japan (National Institute of Polar Research and Arctic Challenge for Sustainability), Norway (University of Bergen and Trond Mohn Foundation), Switzerland (Swiss National Science Foundation), France (French Polar Institute Paul-Emile Victor, Institute for Geosciences and Environmental research), Canada (University of Manitoba) and China (Chinese Academy of Sciences and Beijing Normal University). A.S. acknowledges the ‘Programma di Ricerca in Artico’ (PRA, project number PRA2019-0011, Sentinel) for supporting this work. A.S.-L. received funding from the European Research Council Executive Agency under the European Union’s Horizon 2020 Research and Innovation Programme (project ERC-2016-COG 726349 CLIMAHAL). This work represents a contribution to CSIC Thematic Interdisciplinary Platform PTI POLARCSIC. A.S.M. acknowledges the Indian Institute of Tropical Meteorology (IITM), funded by the Ministry of Earth Sciences (MOES), Government of India (GOI). F.W. received funding from the Canada Research Chairs Program. T.E., C.M.J. and C.Z. acknowledge the long-term support of ice-core research by the Swiss National Science Foundation (SNSF) under the project numbers 200020_172506, 200020B_200328 and 20FI21_164190 as well as the Oeschger Center for Climate Change Research. H.A.K. received funding from the DFF Inge Lehmann grant 1131-00007B ‘Holocene sea ice variability in the Arctic’. ELGA LabWater, High Wycombe, UK, supplied the pure-water system used in this study.

Author information

Authors and Affiliations

Authors

Contributions

A.S., D.S. and A.S.-L. designed the study. D.S., C.T. and W.R.L.C. performed the Hg, Br, Na and Ca analyses. A.S.M. and D.S. performed the box model simulations. C.Z., T.E. and C.M.J. provided the EGRIP dust profile. A.S.M., J.P.C. and F.W. contributed to the interpretation of the results. D.S., A.S.M., A.S.-L., A.S., F.W., J.P.C., W.R.L.C. and T.E. wrote the original manuscript. C.A.C., T.E., C.M.J., C.Z., W.R.L.C., H.A.K. and C.B. contributed to the review and editing of the manuscript. All authors provided input for the manuscript.

Corresponding authors

Correspondence to Alfonso Saiz-Lopez or Andrea Spolaor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Giovanni Baccolo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Tables 1–4 and Discussion.

Supplementary Data

Hg, Br, Na and Ca concentrations in the EGRIP ice core.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segato, D., Saiz-Lopez, A., Mahajan, A.S. et al. Arctic mercury flux increased through the Last Glacial Termination with a warming climate. Nat. Geosci. 16, 439–445 (2023). https://doi.org/10.1038/s41561-023-01172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01172-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing