Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The magmatic architecture and evolution of the Chang’e-5 lunar basalts

Abstract

The lunar basalt samples returned by the Chang’e-5 mission erupted about 2.0 billion years ago during the late period of the Moon’s secular cooling. The conditions of mantle melting in the source region and the migration of magma through the thick lithosphere that led to this relatively late lunar volcanism remain open questions. Here we combine quantitative textural analyses of Chang’e-5 basaltic clasts, diffusion chronometry, clinopyroxene geothermobarometers and crystallization simulations to establish a holistic picture of the dynamic magmatic–thermal evolution of these young lunar basalts. We find that the Chang’e-5 basalts originated from an olivine-bearing pyroxenite mantle source (10–13 kbar or 250 ± 50 km; 1,350 ± 50 °C), similar to Apollo 12 low-Ti basalts. We propose these magmas then ascended through the plumbing system and accumulated mainly at the top of the lithospheric mantle (~2–5 kbar or 40–100 km, 1,150 ± 50 °C), where they stalled at least several hundred days and evolved via high-degree fractional crystallization. Finally, the remaining evolved melts erupted rapidly onto the surface over several days. Our magmatic–thermal evolution model indicates abundant low-solidus pyroxenites in the mantle source with a slightly enhanced inventory of radioactive elements can explain the prolonged, but declining, lunar volcanism up to about 2 billion years ago and beyond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The CSD and diffusion results for the CE-5 basalts.
Fig. 2: The backscattered electron (BSE) images and X-ray colour maps of Fe content and the corresponding Mg# profiles show different types of clinopyroxenes.
Fig. 3: The chemical compositions of clinopyroxene (Cpx) from the CE-5 basalts and their comparison with those of some representative Apollo basaltic samples.
Fig. 4: Pressure and temperature estimations and pMELTS modelling results.
Fig. 5: Schematic architecture model of the magma plumbing system for the young CE-5 basalts.

Similar content being viewed by others

Data availability

All data analysed or generated during this study are available in EarthChem Library at https://doi.org/10.26022/IEDA/112769, Science Data Bank at https://doi.org/10.57760/sciencedb.o00009.00468 and Supplementary Tables. Source data are provided with this paper.

Code availability

The MATLAB code used for diffusion modelling and error calculation in this study can be obtained from the corresponding author B.L.

References

  1. Wilson, L. Volcanism in the Solar System. Nat. Geosci. 2, 389–397 (2009).

    Article  Google Scholar 

  2. Head, J. W. & Wilson, L. Planetary volcanology: progress, problems, and opportunities. Bull. Volcanol. 84, 23 (2022).

    Article  Google Scholar 

  3. Shearer, C. K. et al. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60, 365–518 (2006).

    Article  Google Scholar 

  4. Hiesinger, H., Head, J. W., Wolf, U., Jaumann, R. & Neukum, G. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res. E 108, 5065 (2003).

    Article  Google Scholar 

  5. Hiesinger, H., Head, J. W., Wolf, U., Jaumann, R. & Neukum, G. in Recent Advances and Current Research Issues in Lunar Stratigraphy (eds Ambrose, W. A. & Williams, D. A.) Ch. 1 (GSA, 2011).

  6. Merle, R. E. et al. Pb–Pb ages and initial Pb isotopic composition of lunar meteorites: NWA 773 clan, NWA 4734, and Dhofar 287. Meteorit. Planet. Sci. 55, 1808–1832 (2020).

    Article  Google Scholar 

  7. Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: surface expressions and crust–mantle origins. J. Geophys. Res. Planets 105, 4197–4216 (2000).

    Article  Google Scholar 

  8. Wieczorek, M. A. & Phillips, R. J. The ‘Procellarum KREEP Terrane’: implications for mare volcanism and lunar evolution. J. Geophys. Res. Planets 105, 20417–20430 (2000).

    Article  Google Scholar 

  9. Borg, L., Shearer, C., Asmerom, Y. & Papike, J. Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. Nature 432, 209–211 (2004).

    Article  Google Scholar 

  10. Laneuville, M., Wieczorek, M. A., Breuer, D. & Tosi, N. Asymmetric thermal evolution of the Moon. J. Geophys. Res. Planets 118, 1435–1452 (2013).

    Article  Google Scholar 

  11. Li, Q.-L. et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 600, 54–58 (2021).

    Article  Google Scholar 

  12. Che, X. et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science 374, 887–890 (2021).

    Article  Google Scholar 

  13. Tian, H.-C. et al. Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature 600, 59–63 (2021).

    Article  Google Scholar 

  14. Hu, S. et al. A dry lunar mantle reservoir for young mare basalts of Chang’e-5. Nature 600, 49–53 (2021).

    Article  Google Scholar 

  15. Wilson, L. & Head, J. W. Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (part 1: theory). Icarus 283, 146–175 (2017).

    Article  Google Scholar 

  16. Head, J. W. & Wilson, L. Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (part 2: predicted emplacement processes and observations). Icarus 283, 176–223 (2017).

    Article  Google Scholar 

  17. Qian, Y., Xiao, L., Head, J. W. & Wilson, L. The long sinuous rille system in northern Oceanus Procellarum and its relation to the Chang’e-5 returned samples. Geophys. Res. Lett. 48, e2021GL092663 (2021).

    Article  Google Scholar 

  18. Zong, K. et al. Bulk compositions of the Chang’e-5 lunar soil: insights into chemical homogeneity, exotic addition, and origin of landing site basalts. Geochim. Cosmochim. Acta 335, 284–296 (2022).

    Article  Google Scholar 

  19. He, Q. et al. Detailed petrogenesis of the unsampled Oceanus Procellarum: the case of the Chang’e-5 mare basalts. Icarus 383, 115082 (2022).

    Article  Google Scholar 

  20. Li, C. et al. Characteristics of the lunar samples returned by the Chang’e-5 mission. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwab188 (2021).

  21. Yang, W. et al. Geochemistry of impact glasses in the Chang’e-5 regolith: constraints on impact melting and the petrogenesis of local basalt. Geochim. Cosmochim. Acta 335, 183–196 (2022).

    Article  Google Scholar 

  22. Zhang, D. et al. Titanium in olivine reveals low-Ti origin of the Chang’e-5 lunar basalts. Lithos 414–415, 106639 (2022).

    Article  Google Scholar 

  23. Bence, A. E., Papik, J. J. & Lindsley, D. Crystallization histories of clinopyroxenes in two porphyritic rocks from Oceanus Procellarum. In Proc. Second Lunal Science Conference Vol. I, 559–574 (MIT Press, 1971).

  24. Bence, A. E. & Papike, J. J. Pyroxenes as recorders of lunar basalt petrogenesis: chemical trends due to crystal–liquid interaction. Geochim. Cosmochim. Acta 3, 431–469 (1972).

    Google Scholar 

  25. Costa, F., Shea, T. & Ubide, T. Diffusion chronometry and the timescales of magmatic processes. Nat. Rev. Earth Environ. 1, 201–214 (2020).

    Article  Google Scholar 

  26. Neave, D. A. & Putirka, K. D. A new clinopyroxene–liquid barometer, and implications for magma storage pressures under Icelandic rift zones. Am. Mineral. 102, 777–794 (2017).

    Article  Google Scholar 

  27. Blundy, J. & Cashman, K. Petrologic reconstruction of magmatic system variables and processes. Rev. Mineral. Geochem. 69, 179–239 (2008).

    Article  Google Scholar 

  28. Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. & Kress, V. C. III The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2001GC000217 (2002).

  29. Putirka, K. D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 69, 61–120 (2008).

    Article  Google Scholar 

  30. Marsh, B. D. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. Contrib. Mineral. Petrol. 99, 277–291 (1988).

    Article  Google Scholar 

  31. Cashman, K. V. Crystal Size distribution (CSD) analysis of volcanic samples: advances and challenges. Front. Earth Sci. 8, 291 (2020).

    Article  Google Scholar 

  32. Webb, S. et al. Crystal size distribution of plagioclase in basalt fragments from Oceanus Procellarum recovered by Chang’e-5. in 53rd Lunar and Planetary Science Conference, 2896 (2022).

  33. Brugger, C. R. & Hammer, J. E. Crystal size distribution analysis of plagioclase in experimentally decompressed hydrous rhyodacite magma. Earth Planet. Sci. Lett. 300, 246–254 (2010).

    Article  Google Scholar 

  34. Neal, C. R. et al. Crystal size distribution of ilmenite in Chang’e 5 basalt clasts. in 53rd Lunar and Planetary Science Conference 2353 (2022).

  35. Burkhard, D. J. M. Nucleation and growth rates of pyroxene, plagioclase, and Fe-Ti oxides in basalt under atmospheric conditions. Eur. J. Mineral. 17, 675–685 (2005).

    Article  Google Scholar 

  36. Müller, T., Dohmen, R., Becker, H. W., ter Heege, J. H. & Chakraborty, S. Fe–Mg interdiffusion rates in clinopyroxene: experimental data and implications for Fe–Mg exchange geothermometers. Contrib. Mineral. Petrol. 166, 1563–1576 (2013).

    Article  Google Scholar 

  37. Riker, J. M., Cashman, K. V., Rust, A. C. & Blundy, J. D. Experimental constraints on plagioclase crystallization during H2O- and H2O-CO2-saturated magma decompression. J. Petrol. 56, 1967–1998 (2015).

    Article  Google Scholar 

  38. Hollister, L. S., Trzcienski, W. E.Jr., Hargraves, R. B. & Kulick, C. G. Petrogenetic significance of pyroxenes in two Apollo 12 samples. In Proc. Second Lunar Science Conference Vol. 2, 529–557 (MIT Press, 1971).

  39. Boyd, F. & Smith, D. Compositional zoning in pyroxenes from lunar rock 12021, Oceanus Procellarum. J. Petrol. 12, 439–464 (1971).

    Article  Google Scholar 

  40. Walker, D., Kirkpatrick, R. J., Longhi, J. & Hays, J. F. Crystallization history of lunar picritic basalt sample 12002: phase-equilibria and cooling-rate studies. GSA Bull. 87, 646–656 (1976).

    Article  Google Scholar 

  41. Green, D. H., Ringwood, A. E., Ware, N. G., Hibberson, W. O. & Kiss, E. Experimental petrology and petrogenesis of Apollo 12 basalts. In Proc. Second Lunar Science Conference Vol. 1, 601–615 (MIT Press,1971).

  42. Grove, T. L., Walker, D., Longhi, J., Stolper, E. & Hays, J. F. Petrology of rock 12002 and origin of picritic basalts at Oceanus Procellarum. In Proc. Fourth Lunar Science Conference (Supplement 4, Geochim. Cosmochim. Acta) Vol. 1, 995–1011 (Lunar and Planetary Institute, 1973).

  43. Grove, T. L. & Krawczynski, M. J. Lunar mare volcanism: where did the magmas come from? Elements 5, 29–34 (2009).

    Article  Google Scholar 

  44. Su, B. et al. Fusible mantle cumulates trigger young mare volcanism on the Cooling Moon. Sci. Adv. 8, eabn2103 (2022).

    Article  Google Scholar 

  45. Elkins-Tanton, L. T., Hager, B. H. & Grove, T. L. Magmatic effects of the lunar late heavy bombardment. Earth Planet. Sci. Lett. 222, 17–27 (2004).

    Article  Google Scholar 

  46. Weber, R. C., Lin, P.-Y., Garnero, E. J., Williams, Q. & Lognonné, P. Seismic detection of the lunar core. Science 331, 309–312 (2011).

    Article  Google Scholar 

  47. Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013).

    Article  Google Scholar 

  48. Elardo, S. M. et al. The origin of young mare basalts inferred from lunar meteorites Northwest Africa 4734, 032, and LaPaz Icefield 02205. Meteorit. Planet. Sci. 49, 261–291 (2014).

    Article  Google Scholar 

  49. Snyder, G. A., Taylor, L. A. & Neal, C. R. A chemical model for generating the sources of mare basalts: Combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56, 3809–3823 (1992).

    Article  Google Scholar 

  50. Elkins-Tanton, L. T., Burgess, S. & Yin, Q.-Z. The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet. Sci. Lett. 304, 326–336 (2011).

    Article  Google Scholar 

  51. Lin, Y., Tronche, E. J., Steenstra, E. S. & van Westrenen, W. Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean. Nat. Geosci. 10, 14–18 (2017).

    Article  Google Scholar 

  52. Warren, P. H., Haack, H. & Rasmussen, K. L. Megaregolith insulation and the duration of cooling to isotopic closure within differentiated asteroids and the Moon. J. Geophys. Res. Solid Earth 96, 5909–5923 (1991).

    Article  Google Scholar 

  53. Cashman, K. V. & Marsh, B. D. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi lava lake. Contrib. Mineral. Petrol. 99, 292–305 (1988).

    Article  Google Scholar 

  54. China National Space Administration. Lunar Sample Information Database (2023); https://moon.bao.ac.cn/moonSampleMode/index.html

  55. Morgan, D. J. & Jerram, D. A. On estimating crystal shape for crystal size distribution analysis. J. Volcanol. Geotherm. Res. 154, 1–7 (2006).

    Article  Google Scholar 

  56. Higgins, M. D. Measurement of crystal size distributions. Am. Mineral. 85, 1105–1116 (2000).

    Article  Google Scholar 

  57. Donohue, P. H. & Neal, C. R. Quantitative textural analysis of ilmenite in Apollo 17 high-titanium mare basalts. Geochim. Cosmochim. Acta 149, 115–130 (2015).

    Article  Google Scholar 

  58. Mollo, S., Del Gaudio, P., Ventura, G., Iezzi, G. & Scarlato, P. Dependence of clinopyroxene composition on cooling rate in basaltic magmas: implications for thermobarometry. Lithos 118, 302–312 (2010).

    Article  Google Scholar 

  59. Putirka, K. Clinopyroxene + liquid equilibria to 100 kbar and 2450 K. Contrib. Mineral. Petrol. 135, 151–163 (1999).

    Article  Google Scholar 

  60. Morgan, D. J. et al. Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth Planet. Sci. Lett. 222, 933–946 (2004).

    Article  Google Scholar 

  61. Dohmen, R., Faak, K. & Blundy, J. D. Chronometry and speedometry of magmatic processes using chemical diffusion in olivine, plagioclase and pyroxenes. Rev. Mineral. Geochem. 83, 535–575 (2017).

    Article  Google Scholar 

  62. Saunders, K., Buse, B., Kilburn, M. R., Kearns, S. & Blundy, J. Nanoscale characterisation of crystal zoning. Chem. Geol. 364, 20–32 (2014).

    Article  Google Scholar 

  63. Zhang, Y. Geochemical Kinetics (Princeton University Press, 2009).

  64. Costa, F. Clocks in magmatic rocks. Annu. Rev. Earth Planet. Sci. 49, 231–252 (2021).

    Article  Google Scholar 

  65. Costa, F. & Morgan, D. in Timescales of Magmatic Processes: From Core to Atmosphere (eds Dosseto, A., Turner, P.A. & Van Orman, J.A.), Ch. 7 (John Wiley & Sons, 2010); https://doi.org/10.1002/9781444328509.ch7

Download references

Acknowledgements

We appreciate all staff of the Chang’e-5 mission, and their great effort makes this work possible. We thank China National Space Administration (CNSA) for providing access to the returned sample (CE5C0400) and China University of Geoscience, Wuhan for technical support. This work was supported by the pre-research project on Civil Aerospace Technologies funded by CNSA to Z. W. (no. D020205). B.L. thanks the China Scholarship Council (no. 201906415001) and K. Cashman, J. Blundy and A. Rust for guiding volcanology research.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. applied the CE-5 samples from CNSA with the help of Q.H., X.W., K.Z., Z.H., L.X., W.Z. and Z.S., and B.L. and Z.W. designed this research. Q.H., Y.L., X.W. and J.Z. prepared the samples. B.L., B.R., J.S., B.H., Y.H., C.X., F.P. and W.L. carried out experiments. B.L. and Z.W. wrote the manuscript draft, Y.Q., J.W.H., F.M., L.X., H.B., H.Z. and L.X. revised the manuscript, and all authors participated in data interpretation.

Corresponding authors

Correspondence to Biji Luo or Zaicong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Charles Shearer, Renaud Merle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Some reprehensive backscattered electron (BSE) images of the Chang’E-5 basalt clasts in this study were used for CSD analyzed.

a–e, Microlites in groundmass. a. LS-5-28. b. Outline of plagioclase in LS-5-28. c. LS-1-142. d. LS-2-66. e. 26-710. f. Porphyritic, CE-2. Cpx, clinopyroxene; Pl, plagioclase; Ol, olivine; Ilm, ilmenite.

Extended Data Fig. 2 Representative textural and compositional zoning diagrams for different types of clinopyroxene.

Type I-a, microlites: a, d, 5-28-1A; Type I-b, larger phenocrysts: b, e, 26-2-01; and c f, 26-1-01; Type II, patchy zoning, g-j, 24-632-C; Type III-a, normal zoning: k, n, 11-2-C; l, o, 23-01; and m, p, 21-3B. Insert circles represent the crystallographic and traverse orientation projection that were measured by EBSD. α, β and γ are angles between measured profile and [100], [010] and [001] axes, respectively. The white bars represent 10 μm.

Extended Data Fig. 3 Chemical composition of clinopyroxene from the Chang’E-5 basaltic fragments.

a, Quadrilateral diagram of clinopyroxene (Cpx). The grey dots are all the original CPX analysis points (data are from this study and references12,13,14,19). The red dots are the relatively high Mg# analysis points and were used for the calculations of clinopyroxene-liquid thermobarometers. b, Histogram showing the distribution of the Mg# values of clinopyroxene. c, Rhodes diagram for the clinopyroxene. Cpx Mg# vs. Liquid Mg#. The composition of CE-5 B112 that equilibrium with most high Mg#-Cpx was used to represent the composition of the liquid. d, Observed Cpx components vs. Predicted Cpx components. The observed Cpx components are close to the predicted Cpx components, indicating that the calculation results are reliable. CaTs: calcium Tschermak, En: enstatite, Fs: ferrosilite, Di: diopside, Hd: hedenbergite.

Source data

Extended Data Fig. 4 The relationship between greyscale and Mg# and CaO (wt. %) for clinopyroxene.

The results show that the greyscale is mainly controlled by Mg# values, rather than CaO contents.

Source data

Extended Data Fig. 5 Diffusion coefficient and temperature calculations.

a, Diffusion coefficients DFe–Mg of clinopyroxene verses temperature (°C)36. b, pMELTs simulation results of Mg# values of clinopyroxene and temperatures at P = 0.001 kbar and P = 4 kbar, respectively. The average compositions of the CE-5 basaltic fragments (CE-5A)13 were used as starting material. The result show that the Mg# values of clinopyroxene have a good relationship with the temperature. Thus, the Mg# values of clinopyroxene can be used to estimate the crystallization temperature. Since most clinopyroxene with complex zoning formed in the deep magma reservoirs, we assume that it is most likely at a peak pressure of 4 kbar.

Source data

Extended Data Fig. 6 pMELTs simulation results.

a, Experimental phase diagram for the Apollo-12 nearly primary low-Ti basaltic sample 1200240. bd, The phase diagrams were simulated by pMELTs for the 12002, CE-5A, and 042GP-002, respectively. The shaded circles in a, b, c and d represent the multiple-saturation points, which could indicate the potential minimum origin depth and residual minerals43. The grey lines in b are the experimental result for 1200240. The pMELTS simulation phase diagram for 12002 is very similar to that of the experimental result40, indicating that the pMELTS results are effective. The results suggest that the CE-5 basalts were saturated with olivine and pyroxene residual at deep source. e and f, pMELTS results for clinopyroxene Al2O3 or Na2O contents vs. pressures, respectively. CE-5A is the average composition of CE-5 basaltic fragments13. 042GP-002 is a relatively primitive basaltic fragment with higher Mg# (47) value13. Cpx, clinopyroxene; Pl, plagioclase; Ol, olivine; Ilm, ilmenite; Spl, spinel.

Source data

Extended Data Table 1 Summary of CSD slopes, intercepts, characteristic length (CL) and calculated residence time (τ) of plagioclase, ilmenite and clinopyroxene from the Chang’E-5 basaltic fragments
Extended Data Table 2 Calculated residence times (days) obtained by modeling Fe-Mg diffusion in clinopyroxene from the Chang’E-5 basaltic fragments
Extended Data Table 3 Major elements of some representative Chang’E-5 basaltic fragments and lunar soils and Apollo 12 basalt 12002

Supplementary information

Supplementary Tables

Supplementary Tables 1–3.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, B., Wang, Z., Song, J. et al. The magmatic architecture and evolution of the Chang’e-5 lunar basalts. Nat. Geosci. 16, 301–308 (2023). https://doi.org/10.1038/s41561-023-01146-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01146-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing