Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pacific shoreline erosion and accretion patterns controlled by El Niño/Southern Oscillation

This article has been updated

Abstract

In the Pacific Basin, the El Niño/Southern Oscillation (ENSO) is the dominant mode of interannual climate variability, driving substantial changes in oceanographic forcing and impacting Pacific coastlines. Yet, how sandy coasts respond to these basin-scale changes has to date been limited to a few long-term beach monitoring sites, predominantly on developed coasts. Here we use 38 years of Landsat imagery to map shoreline variability around the Pacific Rim and identify coherent patterns of beach erosion and accretion controlled by ENSO. On the basis of more than 83,000 beach transects covering 8,300 km of sandy coastline, we find that approximately one-third of all transects experience significant erosion during El Niño phases. The Eastern Pacific is particularly vulnerable to widespread erosion, most notably during the large 1997/1998 El Niño event. By contrast, La Niña events coincide with significant accretion for approximately one-quarter of all transects, although substantial erosion is observed in southeast Australia and other localized regions. The observed regional variability in the coastal response to ENSO has important implications for coastal planning and adaptation measures across the Pacific, particularly in light of projected future changes in ENSO amplitude and flavour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regional patterns of shoreline response to ENSO along the Pacific Rim.
Fig. 2: Teleconnections between wave energy flux and ENSO phases along the Pacific Rim.
Fig. 3: Teleconnections between sea-level anomalies and ENSO phases along the Pacific Rim.
Fig. 4: Temporal patterns in regional shoreline erosion between 1984 and 2021.

Similar content being viewed by others

Data availability

The full satellite-derived shoreline dataset generated and analysed in the current study is available in the following Zenodo data repository: https://doi.org/10.5281/zenodo.4760144. The data are also displayed on an interactive web portal at http://coastsat.wrl.unsw.edu.au/. Source data are provided with this paper.

Code availability

The source code to map satellite-derived shorelines from Landsat imagery (CoastSat) is available at https://doi.org/10.5281/zenodo.2779293. The source code to estimate beach slopes from satellite-derived shorelines and modelled tides (CoastSat.slope) is available at https://doi.org/10.5281/zenodo.3872442.

Change history

  • 13 March 2023

    In the version of this article initially published, the box labels in the top-left corner of the four panels in Figs. 1–3, now each reading as (a) El Niño — boreal winter (DJF), (b) La Niña — boreal winter (DJF), (c) El Niño — all seasons, and (d) La Niña — all seasons, were originally omitted. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Luijendijk, A. et al. The state of the world’s beaches. Sci. Rep. 8, 6641 (2018).

  2. Nyberg, B. & Howell, J. A. Global distribution of modern shallow marine shorelines. Implications for exploration and reservoir analogue studies. Mar. Pet. Geol. 71, 83–104 (2016).

    Article  Google Scholar 

  3. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article  Google Scholar 

  4. Woollings, T. & Blackburn, M. The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J. Clim. 25, 886–902 (2012).

    Article  Google Scholar 

  5. Reguero, B. G., Losada, I. J. & Méndez, F. J. A recent increase in global wave power as a consequence of oceanic warming. Nat. Commun. 10, 205 (2019).

    Article  Google Scholar 

  6. Mentaschi, L., Vousdoukas, M. I., Voukouvalas, E., Dosio, A. & Feyen, L. Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophys. Res. Lett. 44, 2416–2426 (2017).

    Article  Google Scholar 

  7. Theuerkauf, E. J., Rodriguez, A. B., Fegley, S. R. & Luettich, R. A. Sea level anomalies exacerbate beach erosion. Geophys. Res. Lett. 41, 5139–5147 (2014).

    Article  Google Scholar 

  8. Ranasinghe, R. Assessing climate change impacts on open sandy coasts: a review. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2016.07.011 (2016).

  9. Li, N., Yamazaki, Y., Roeber, V., Cheung, K. F. & Chock, G. Probabilistic mapping of storm-induced coastal inundation for climate change adaptation. Coast. Eng. 133, 126–141 (2018).

    Article  Google Scholar 

  10. Troup, A. J. The ‘southern oscillation’. Q. J. R. Meteorol. Soc. 91, 490–506 (1965).

    Article  Google Scholar 

  11. Odériz, I., Silva, R., Mortlock, T. R. & Mori, N. El Niño–Southern Oscillation impacts on global wave climate and potential coastal hazards. J. Geophys. Res. Oceans https://doi.org/10.1029/2020jc016464 (2020).

    Article  Google Scholar 

  12. White, N. J. et al. Australian sea levels—trends, regional variability and influencing factors. Earth Sci. Rev. 136, 155–174 (2014).

    Article  Google Scholar 

  13. Ward, P. J., Beets, W., Bouwer, L. M., Aerts, J. C. J. H. & Renssen, H. Sensitivity of river discharge to ENSO. Geophys. Res. Lett. https://doi.org/10.1029/2010GL043215 (2010).

  14. Vidal-Ruiz, J. A. & Ruiz de Alegría-Arzaburu, A. Variability of sandbar morphometrics over three seasonal cycles on a single-barred beach. Geomorphology 333, 61–72 (2019).

    Article  Google Scholar 

  15. Peterson, C. D., Jackson, P. L., O’Neil, D. J., Rosenfeld, C. L. & Kimerling, A. J. Littoral cell response to interannual climatic forcing 1983–1987 on the central Oregon coast, USA. J. Coast. Res. 6, 87–110 (1990).

    Google Scholar 

  16. Barnard, P. L. et al. The impact of the 2009–10 El Niño Modoki on US West Coast beaches. Geophys. Res. Lett. https://doi.org/10.1029/2011GL047707 (2011).

  17. Barnard, P. L. et al. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nat. Commun. 8, 14365 (2017).

    Article  Google Scholar 

  18. Kuriyama, Y., Banno, M. & Suzuki, T. Linkages among interannual variations of shoreline, wave and climate at Hasaki, Japan. Geophys. Res. Lett. 39, 2–5 (2012).

    Article  Google Scholar 

  19. Phinn, S. R. & Hastings, P. A. Southern Oscillation Influences on the Gold Coast’s summer wave climate. J. Coast. Res. 11, 946–958 (1995).

    Google Scholar 

  20. Ranasinghe, R., McLoughlin, R., Short, A. & Symonds, G. The Southern Oscillation Index, wave climate, and beach rotation. Mar. Geol. 204, 273–287 (2004).

    Article  Google Scholar 

  21. Barnard, P. L. et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat. Geosci. 8, 801–807 (2015).

    Article  Google Scholar 

  22. Young, A. P. et al. Southern California coastal response to the 2015–2016 El Niño. J. Geophys. Res. Earth Surf. 123, 3069–3083 (2018).

    Article  Google Scholar 

  23. Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article  Google Scholar 

  24. Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A. & Palomar-Vázquez, J. Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sens. Environ. 123, 1–11 (2012).

    Article  Google Scholar 

  25. Hagenaars, G., de Vries, S., Luijendijk, A. P., de Boer, W. P. & Reniers, A. J. H. M. On the accuracy of automated shoreline detection derived from satellite imagery: a case study of the sand motor mega-scale nourishment. Coast. Eng. 133, 113–125 (2018).

    Article  Google Scholar 

  26. Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A. & Turner, I. L. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coast. Eng. 150, 160–174 (2019).

    Article  Google Scholar 

  27. Mentaschi, L., Vousdoukas, M. I., Pekel, J.-F., Voukouvalas, E. & Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 8, 12876 (2018).

    Article  Google Scholar 

  28. Vos, K., Harley, M. D., Splinter, K. D., Walker, A. & Turner, I. L. Beach slopes from satellite-derived shorelines. Geophys. Res. Lett. 47, e2020GL088365 (2020).

  29. Castelle, B., Ritz, A., Marieu, V., Nicolae Lerma, A. & Vandenhove, M. Primary drivers of multidecadal spatial and temporal patterns of shoreline change derived from optical satellite imagery. Geomorphology 413, 108360 (2022).

    Article  Google Scholar 

  30. Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A. & Turner, I. L. CoastSat: a Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw 122, 104528 (2019).

    Article  Google Scholar 

  31. Wolter, K. & Timlin, M. S. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol. 31, 1074–1087 (2011).

    Article  Google Scholar 

  32. Young, I. R. Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol. 19, 931–950 (1999).

    Article  Google Scholar 

  33. Russell, P. E. Mechanisms for beach erosion during storms. Cont. Shelf Res. 13, 1243–1265 (1993).

    Article  Google Scholar 

  34. Masselink, G. et al. Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophys. Res. Lett. 43, 2135–2143 (2016).

  35. Phillips, M. S., Harley, M. D., Turner, I. L., Splinter, K. D. & Cox, R. J. Shoreline recovery on wave-dominated sandy coastlines: the role of sandbar morphodynamics and nearshore wave parameters. Mar. Geol. 385, 146–159 (2017).

    Article  Google Scholar 

  36. Davidson, M. A., Turner, I. L., Splinter, K. D. & Harley, M. D. Annual prediction of shoreline erosion and subsequent recovery. Coast. Eng. 130, 14–25 (2017).

    Article  Google Scholar 

  37. Thom, B. G. & Hall, W. Behaviour of beach profiles during accretion and erosion dominated periods. Earth Surf. Process. Landf. 16, 113–127 (1991).

    Article  Google Scholar 

  38. Wang, G. et al. Continued increase of extreme El Ninõ frequency long after 1.5 °C warming stabilization. Nat. Clim. Change 7, 568–572 (2017).

    Article  Google Scholar 

  39. Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938 (2014).

    Article  Google Scholar 

  40. Yeh, S. W. et al. El Niño in a changing climate. Nature 461, 511–514 (2009).

    Article  Google Scholar 

  41. Freund, M. B. et al. Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat. Geosci. 12, 450–455 (2019).

    Article  Google Scholar 

  42. Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

    Article  Google Scholar 

  43. Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans 112, 7 (2007).

  44. Kao, H. Y. & Yu, J. Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Clim. 22, 615–632 (2009).

    Article  Google Scholar 

  45. Santoso, A., Mcphaden, M. J. & Cai, W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys. 55, 1079–1129 (2017).

    Article  Google Scholar 

  46. Paek, H., Yu, J. Y. & Qian, C. Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett. 44, 1848–1856 (2017).

    Google Scholar 

  47. Wulder, M. A. et al. The global Landsat archive: status, consolidation, and direction. Remote Sens. Environ. 185, 271–283 (2016).

    Article  Google Scholar 

  48. Masselink, G. & Short, A. D. The effect of tide range on beach morphodynamics and morphology: a conceptual beach model. J. Coast. Res. 9, 785–800 (1993).

    Google Scholar 

  49. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  50. Carrere, L., Lyard, F., Cancet, M., Guillot, A. & Picot, N. FES 2014, a new tidal model—validation results and perspectives for improvements. In Proceedings of the ESA Living Planet Symposium 9–13 (ESA, 2016); https://www.aviso.altimetry.fr/

  51. OpenStreetMap contributers (OSM, 2017); https://planet.osm.org

  52. Castelle, B. et al. Satellite-derived shoreline detection at a high-energy meso-macrotidal beach. Geomorphology https://doi.org/10.1016/j.geomorph.2021.107707 (2021).

  53. GitHub - kvos/CoastSat: Global shoreline mapping tool from satellite imagery (GitHub, Inc., 2023).

  54. Cuttler, M. V. W. et al. Interannual response of reef islands to climate-driven variations in water level and wave climate. Remote Sens. 12, 4089 (2020).

    Article  Google Scholar 

  55. Lawson, S. K. et al. Morphodynamics and evolution of estuarine sandspits along the Bight of Benin coast, West Africa. Water 13, 2977 (2021).

    Article  Google Scholar 

  56. Nourdi, N. F. et al. Seasonal to decadal scale shoreline changes along the Cameroonian coastline, Bay of Bonny (1986 to 2020). Reg. Stud. Mar. Sci. 45, 101798 (2021).

    Google Scholar 

  57. Taveneau, A. et al. Observing and predicting coastal erosion at the Langue de Barbarie sand spit around Saint Louis (Senegal, West Africa) through satellite-derived digital elevation model and shoreline. Remote Sens. 13, 2454 (2021).

    Article  Google Scholar 

  58. Adebisi, N., Balogun, A. L., Mahdianpari, M. & Min, T. H. Assessing the impacts of rising sea level on coastal morpho-dynamics with automated high-frequency shoreline mapping using multi-sensor optical satellites. Remote Sens. 13, 3587 (2021).

    Article  Google Scholar 

  59. Sokolewicz, M., Bergsma, L., Schemmekes, L., Nguyen, H. & Boersen, S. Use of remote sensing techniques and numerical modelling to predict coastal erosion in Vetnam. Coast. Eng. Proc. https://doi.org/10.9753/icce.v36v.papers.65 (2020).

  60. Balouin, Y., Bourrin, F., Meslard, F., Palvadeau, E. & Robin, N. Assessing the role of storm waves and river discharge on sediment bypassing mechanisms at the Têt river mouth in the Mediterranean (Southeast France). J. Coast. Res. 95, 351–355 (2020).

    Article  Google Scholar 

  61. Ludka, B. C. et al. Sixteen years of bathymetry and waves at San Diego beaches. Sci. Data 6, 161 (2019).

    Article  Google Scholar 

  62. Hansen, J. E. & Barnard, P. L. Sub-weekly to interannual variability of a high-energy shoreline. Coast. Eng. 57, 959–972 (2010).

    Article  Google Scholar 

  63. Barnard, P. L., Hansen, J. E. & Erikson, L. H. Synthesis study of an erosion hot spot, Ocean Beach, California. J. Coast. Res. 28, 903–922 (2012).

    Article  Google Scholar 

  64. Turner, I. L. et al. A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia. Sci. Data 3, 160024 (2016).

    Article  Google Scholar 

  65. Bracs, M. A., Turner, I. L., Splinter, K. D., Short, A. D. & Mortlock, T. R. Synchronised patterns of erosion and deposition observed at two beaches. Mar. Geol. 380, 196–204 (2016).

    Article  Google Scholar 

  66. Van de Lageweg, W. I., Bryan, K. R., Coco, G. & Ruessink, B. G. Observations of shoreline–sandbar coupling on an embayed beach. Mar. Geol. 344, 101–114 (2013).

    Article  Google Scholar 

  67. Blossier, B., Bryan, K. R., Daly, C. J. & Winter, C. Shore and bar cross-shore migration, rotation, and breathing processes at an embayed beach. J. Geophys. Res. Earth Surf. 122, 1745–1770 (2017).

    Article  Google Scholar 

  68. Meek, G. E., Ozgur, C. & Dunning, K. Comparison of the t vs. Wilcoxon signed-rank test for Likert scale data and small samples. J. Mod. Appl. Stat. Methods 6, 91–106 (2007).

    Article  Google Scholar 

  69. Izumo, T. et al. Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci. 3, 168–172 (2010).

    Article  Google Scholar 

  70. Choi, K. Y., Vecchi, G. A. & Wittenberg, A. T. ENSO transition, duration, and amplitude asymmetries: role of the nonlinear wind stress coupling in a conceptual model. J. Clim. 26, 9462–9476 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the United States Geological Survey/NASA for providing high-quality open-access data to the scientific community, Google Earth Engine for facilitating the access to the archive of publicly available satellite imagery, NOAA for maintaining updated time series of the major climate indices, ECMWF for the reanalysis ERA5 data and multi-mission altimetry dataset, CNES/LEGOS/CLS/AVISO for producing the global tide model FES2014 and F. Briol for developing the Python wrapper and the OpenStreetMap project and contributors (https://www.openstreetmap.org) for their extensive geospatial database. We also thank R. Ibaceta for his input and insightful discussions on ENSO and shoreline change. The lead author was supported by a UNSW Scientia PhD scholarship.

Author information

Authors and Affiliations

Authors

Contributions

K.V., M.H.D., I.L.T. and K.D.S. devised the study, designed the figures and wrote the manuscript. K.V. processed the data (shorelines, waves and sea-level anomalies) and performed the analysis. All authors discussed the results and reviewed the manuscript. M.H.D., I.L.T. and K.D.S. jointly supervised this work.

Corresponding author

Correspondence to Kilian Vos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Juilan O’Grady, Patrick Barnard, Mark Dickson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling editor: Tom Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and text.

Source data

Source Data Figs. 1–4

Raw data to reproduce Figs. 1–4, contains four geospatial layers (.GeoJSON) and a README file.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vos, K., Harley, M.D., Turner, I.L. et al. Pacific shoreline erosion and accretion patterns controlled by El Niño/Southern Oscillation. Nat. Geosci. 16, 140–146 (2023). https://doi.org/10.1038/s41561-022-01117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-01117-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing