Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Formation of manganese oxides on early Mars due to active halogen cycling

Abstract

In situ rover investigations on Mars have discovered manganese oxides as fracture-filling materials at Gale and Endeavour craters. Previous studies interpreted these minerals as indicators of atmospheric oxygen on early Mars. By contrast, we propose that the oxidation of manganese by oxygen is highly unlikely because of exceedingly slow reaction kinetics under Mars-like conditions and therefore requires more reactive oxidants. Here we conduct kinetic experiments to determine the reactivity of the oxyhalogen species chlorate and bromate for oxidizing dissolved Mn(ii) in Mars-like fluids. We find that oxyhalogen species, which are widespread on the surface of Mars, induce substantially greater manganese oxidation rates than O2. From comparisons of the potential oxidation rates of all available oxidants (including reactive oxygen species peroxide and superoxide), we suggest that the oxyhalogen species are the most plausible manganese oxidants on Mars. In addition, our experiments precipitated the manganese oxide mineral nsutite, which is spectrally similar to the dark manganese accumulations reported on Mars. Our results provide a feasible pathway to form manganese oxides under expected geochemical conditions on early Mars and suggest that these phases may record an active halogen cycle rather than substantial atmospheric oxygenation.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Timescales of Mn(ii) oxidation by oxygen.
Fig. 2: Rates of Mn(ii) oxidation by bromate.
Fig. 3: Mineral products of Mn(ii) oxidation by bromate.
Fig. 4: Potential pathways of halogen cycling on Mars, including reactions with iron and manganese.

Data availability

The data associated with the manuscript are available at: https://figshare.com/s/e12d62da416302225cf3.

Code availability

The code to model Mn(ii) oxidation by O2 in the Geochemist’s Workbench is available at https://figshare.com/articles/online_resource/MnII_oxidation_species_Morgan_V7_rea/21066232.

References

  1. Lanza, N. L. et al. High manganese concentrations in rocks at Gale crater, Mars. Geophys. Res. Lett. 41, 5755–5763 (2014).

    Article  Google Scholar 

  2. Lanza, N. L. et al. Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophys. Res. Lett. 43, 7398–7407 (2016).

    Article  Google Scholar 

  3. Berger, J. A. et al. Elemental composition and chemical evolution of geologic materials in Gale crater, Mars: APXS results from Bradbury landing to the Vera Rubin ridge. J. Geophys. Res. Planets 125, e2020JE006536 (2020).

    Article  Google Scholar 

  4. Arvidson, R. E. et al. High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour crater, Mars. Am. Mineral. 101, 1389–1405 (2016).

    Article  Google Scholar 

  5. Mittlefehldt, D. W. et al. Diverse lithologies and alteration events on the rim of Noachian‐aged Endeavour crater, Meridiani Planum, Mars: in situ compositional evidence. J. Geophys. Res. Planets 123, 1255–1306 (2018).

    Article  Google Scholar 

  6. Wordsworth, R. et al. A coupled model of episodic warming, oxidation and geochemical transitions on early Mars. Nat. Geosci. 14, 127–132 (2021).

    Article  Google Scholar 

  7. Liu, Y. et al. Manganese oxides in Martian meteorites Northwest Africa (NWA) 7034 and 7533. Icarus 364, 114471 (2021).

  8. Diem, D. & Stumm, W. Is dissolved Mn2+ being oxidized by O2 in absence of Mn-bacteria or surface catalysts? Geochim. Cosmochim. Acta 48, 1571–1573 (1984).

    Article  Google Scholar 

  9. Trainer, M. G. et al. Seasonal variations in atmospheric composition as measured in Gale crater, Mars. J. Geophys. Res. Planets 124, 3000–3024 (2019).

    Article  Google Scholar 

  10. Davies, S. H. & Morgan, J. J. Manganese (ii) oxidation kinetics on metal oxide surfaces. J. Colloid Interface Sci. 129, 63–77 (1989).

    Article  Google Scholar 

  11. Morgan, J. J. Kinetics of reaction between O2 and Mn(ii) species in aqueous solutions. Geochim. Cosmochim. Acta 69, 35–48 (2005).

    Article  Google Scholar 

  12. von Langen, P. J., Johnson, K. S., Coale, K. H. & Elrod, V. A. Oxidation kinetics of manganese(ii) in seawater at nanomolar concentrations. Geochim. Cosmochim. Acta 61, 4945–4954 (1997).

    Article  Google Scholar 

  13. Madden, A. S. & Hochella, M. F. A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles. Geochim. Cosmochim. Acta 69, 389–398 (2005).

    Article  Google Scholar 

  14. Baron, F., Gaudin, A., Lorand, J. P. & Mangold, N. New constraints on early Mars weathering conditions from an experimental approach on crust simulants. J. Geophys. Res. Planets 124, 1783–1801 (2019).

    Article  Google Scholar 

  15. Kite, E. S. & Daswani, M. M. Geochemistry constrains global hydrology on early Mars. Earth Planet. Sci. Lett. 524, 115718 (2019).

    Article  Google Scholar 

  16. Wang, X. et al. The presence of ferrihydrite promotes abiotic formation of manganese (oxyhydr)oxides. Soil Sci. Soc. Am. J. 79, 1297–1305 (2015).

    Article  Google Scholar 

  17. Lan, S. et al. Mechanisms of Mn(ii) catalytic oxidation on ferrihydrite surfaces and the formation of manganese (oxyhydr) oxides. Geochim. Cosmochim. Acta 211, 79–96 (2017).

    Article  Google Scholar 

  18. Treiman, A. H. et al. Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X‐ray diffraction of the Windjana sample (Kimberley area, Gale crater). J. Geophys. Res. Planets 121, 75–106 (2016).

    Article  Google Scholar 

  19. Zhao, Y. Y. S., McLennan, S. M., Jackson, W. A. & Karunatillake, S. Photochemical controls on chlorine and bromine geochemistry at the Martian surface. Earth Planet. Sci. Lett. 497, 102–112 (2018).

    Article  Google Scholar 

  20. Sutter, B. et al. Measurements of oxychlorine species on Mars. Int. J. Astrobiol. 16, 203–217 (2017).

    Article  Google Scholar 

  21. Bellucci, J. et al. Halogen and Cl isotopic systematics in Martian phosphates: implications for the Cl cycle and surface halogen reservoirs on Mars. Earth Planet. Sci. Lett. 458, 192–202 (2017).

    Article  Google Scholar 

  22. Mitra, K. & Catalano, J. G. Chlorate as a potential oxidant on Mars: rates and products of dissolved Fe(ii) oxidation. J. Geophys. Res. Planets 124, 2893-2916 (2019).

  23. Mitra, K., Moreland, E. L. & Catalano, J. G. Capacity of chlorate to oxidize ferrous iron: implications for iron oxide formation on Mars. Minerals 10, 729 (2020).

    Article  Google Scholar 

  24. Mitra, K., Moreland, E. L., Knight, A. L. & Catalano, J. G. Rates and Products of Iron Oxidation by Chlorate at Low Temperatures (0 to 25 °C) and Implications for Mars Geochemistry. ACS Earth Space Chem. 6, 250–260 (2022).

    Article  Google Scholar 

  25. Zheng, D., Yin, Z., Zhang, W., Tan, X. & Sun, S. Novel branched γ-MnOOH and β-MnO2 multipod nanostructures. Cryst. Growth Des. 6, 1733–1735 (2006).

    Article  Google Scholar 

  26. Dreibus, G. & Wanke, H. Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985).

    Google Scholar 

  27. Rampe, E. B., Cartwright, J. A., McCubbin, F. M. & Osterloo, M. M. in D.E. Harlov, L. Aranovich (eds.) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes 959–995 (Springer, 2018).

  28. VanBommel, S., Gellert, R., Berger, J., Yen, A. & Boyd, N. Mars science laboratory alpha particle X-ray spectrometer trace elements: situational sensitivity to Co, Ni, Cu, Zn, Ga, Ge, and Br. Acta Astronaut. 165, 32–42 (2019).

    Article  Google Scholar 

  29. Wang, X. et al. Multiphase volatilization of halogens at the soil–atmosphere interface on Mars. J. Geophys. Res. Planets 126, e2021JE006929 (2021).

    Article  Google Scholar 

  30. Thompson, R. C. Reduction of bromine(v) by cerium(iii), manganese(ii), and neptunium(v) in aqueous sulfuric acid. J. Am. Chem. Soc. 93, 7315–7315 (1971).

    Article  Google Scholar 

  31. Birk, J. P. Kinetics and mechanism of the reduction of bromate ion by hexachloroiridate(iii). Inorg. Chem. 17, 504–506 (1978).

    Article  Google Scholar 

  32. Le, N. C. & Van Phuc, D. Sorption of lead(ii), cobalt(ii) and copper(ii) ions from aqueous solutions by γ-MnO2 nanostructure. Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 025014 (2015).

    Article  Google Scholar 

  33. Post, J. E. Manganese oxide minerals: crystal structures and economic and environmental significance. Proc. Natl Acad. Sci. USA 96, 3447–3454 (1999).

    Article  Google Scholar 

  34. Noda, N. et al. Highly oxidizing aqueous environments on early Mars inferred from scavenging pattern of trace metals on manganese oxides. J. Geophys. Res. Planets 124, 1282–1295 (2019).

    Google Scholar 

  35. Luther, G. W. The role of one- and two-electron transfer reactions in forming thermodynamically unstable intermediates as barriers in multi-electron redox reactions. Aquat. Geochem. 16, 395–420 (2010).

    Article  Google Scholar 

  36. Hem, J. D. Rates of manganese oxidation in aqueous systems. Geochim. Cosmochim. Acta 45, 1369–1374 (1981).

    Article  Google Scholar 

  37. Coughlin, B. R. & Stone, A. T. Nonreversible adsorption of divalent metal ions (Mnii, Coii, Niii, Cuii, and Pbii) onto goethite: effects of acidification, FeII addition, and picolinic acid addition. Environ. Sci. Technol. 29, 2445–2455 (1995).

    Article  Google Scholar 

  38. Jacobsen, F., Holcman, J. & Sehested, K. Oxidation of manganese(ii) by ozone and reduction of manganese(iii) by hydrogen peroxide in acidic solution. Int. J. Chem. Kinet. 30, 207–214 (1998).

    Article  Google Scholar 

  39. Yen, A., Kim, S., Hecht, M., Frant, M. & Murray, B. Evidence that the reactivity of the Martian soil is due to superoxide ions. Science 289, 1909–1912 (2000).

    Article  Google Scholar 

  40. Zent, A. P., Ichimura, A. S., Quinn, R. C. & Harding, H. K. The formation and stability of the superoxide radical (O2) on rock‐forming minerals: band gaps, hydroxylation state, and implications for Mars oxidant chemistry. J. Geophys. Res. Planets 113, E09001 (2008).

  41. Learman, D. R., Voelker, B. M., Madden, A. S. & Hansel, C. M. Constraints on superoxide mediated formation of manganese oxides. Front. Microbiol. 4, 262 (2013).

    Article  Google Scholar 

  42. Liu, D. & Kounaves, S. P. The role of titanium dioxide (TiO2) in the production of perchlorate (ClO4) from chlorite (ClO2) and chlorate (ClO3) on Earth and Mars. ACS Earth Space Chem. 3, 1678–1684 (2019).

    Article  Google Scholar 

  43. Rao, B., Anderson, T. A., Redder, A. & Jackson, W. A. Perchlorate formation by ozone oxidation of aqueous chlorine/oxy-chlorine species: role of ClxOy radicals. Environ. Sci. Technol. 44, 2961–2967 (2010).

    Article  Google Scholar 

  44. Hamilton, G., Chiswell, B., Terry, J., Dixon, D. & Sly, L. Filtration and manganese removal. J. Water Supply Res. Technol. Aqua 62, 417–425 (2013).

    Article  Google Scholar 

  45. Chen, L., Zhang, J. J. & Zheng, X. L. Coupling technique for deep removal of manganese and iron from potable water. Environ. Eng. Sci. 33, 261–269 (2016).

    Article  Google Scholar 

  46. Adam, L. C., Fabian, I., Suzuki, K. & Gordon, G. Hypochlorous acid decomposition in the pH 5–8 region. Inorg. Chem. 31, 3534–3541 (1992).

    Article  Google Scholar 

  47. Farley, K. A. et al. Light and variable 37Cl/35Cl ratios in rocks from Gale crater, Mars: possible signature of perchlorate. Earth Planet. Sci. Lett. 438, 14–24 (2016).

    Article  Google Scholar 

  48. Brundrett, M., Yan, W., Velazquez, M. C., Rao, B. & Jackson, W. A. Abiotic reduction of chlorate by Fe(ii) minerals: implications for occurrence and transformation of oxy-chlorine species on Earth and Mars. ACS Earth Space Chem. 3, 700–710 (2019).

    Article  Google Scholar 

  49. Miller, L. G., Baesman, S. M., Carlström, C. I., Coates, J. D. & Oremland, R. S. Methane oxidation linked to chlorite dismutation. Front. Microbiol. 5, 275 (2014).

    Article  Google Scholar 

  50. Zhang, X. et al. Reaction of methane and UV-activated perchlorate: relevance to heterogeneous loss of methane in the atmosphere of Mars. Icarus 376, 114832 (2022).

    Article  Google Scholar 

  51. Smith, M. L., Claire, M. W., Catling, D. C. & Zahnle, K. J. The formation of sulfate, nitrate and perchlorate salts in the Martian atmosphere. Icarus 231, 51–64 (2014).

    Article  Google Scholar 

  52. Catling, D. C. et al. Atmospheric origins of perchlorate on Mars and in the Atacama. J. Geophys. Res. Planets 115, E00E11 (2010).

    Article  Google Scholar 

  53. Turner, A. M., Abplanalp, M. J. & Kaiser, R. I. Mechanistic studies on the radiolytic decomposition of perchlorates on the Martian surface. Astrophys. J. 820, 127 (2016).

    Article  Google Scholar 

  54. Wu, Z. C. et al. Forming perchlorates on Mars through plasma chemistry during dust events. Earth Planet. Sci. Lett. 504, 94–105 (2018).

    Article  Google Scholar 

  55. Carrier, B. L. & Kounaves, S. P. The origins of perchlorate in the Martian soil. Geophys. Res. Lett. 42, 3739–3745 (2015).

    Article  Google Scholar 

  56. Melwani Daswani, M. & Kite, E. Paleohydrology on Mars constrained by mass balance and mineralogy of pre‐Amazonian sodium chloride lakes. J. Geophys. Res. Planets 122, 1802–1823 (2017).

    Article  Google Scholar 

  57. Kim, Y. S., Wo, K. P., Maity, S., Atreya, S. K. & Kaiser, R. I. Radiation-induced formation of chlorine oxides and their potential role in the origin of Martian perchlorates. J. Am. Chem. Soc. 135, 4910–4913 (2013).

    Article  Google Scholar 

  58. Kang, N., Anderson, T. A., Rao, B. & Jackson, W. A. Characteristics of perchlorate formation via photodissociation of aqueous chlorite. Environ. Chem. 6, 53–59 (2009).

    Article  Google Scholar 

  59. Bethke, C. M. Geochemical and biogeochemical reaction modeling. (Cambridge University Press, 2007).

  60. Catalano, J. G. Thermodynamic and mass balance constraints on iron-bearing phyllosilicate formation and alteration pathways on early Mars. J. Geophys. Res. Planets 118, 2124–2136 (2013).

    Article  Google Scholar 

  61. Delany, J. & Lundeen, S. R. The LLNL Thermochemical Database Report UCRL-21658 (Lawrence Livermore National Laboratory, 1990).

  62. Sternbeck, J. Kinetics of rhodochrosite crystal growth at 25 °C: the role of surface speciation. Geochim. Cosmochim. Acta 61, 785–793 (1997).

    Article  Google Scholar 

  63. Vaniman, D. T. et al. Magnesium sulphate salts and the history of water on Mars. Nature 431, 663–665 (2004).

    Article  Google Scholar 

  64. Fox-Powell, M. G., Hallsworth, J. E., Cousins, C. R. & Cockell, C. S. Ionic strength is a barrier to the habitability of Mars. Astrobiology 16, 427–442 (2016).

    Article  Google Scholar 

  65. Gellert, R. et al. Alpha Particle X‐ray Spectrometer (APXS): results from Gusev crater and calibration report. J. Geophys. Res. Planets 111, E02S05 (2006).

  66. Marion, G., Catling, D. & Kargel, J. Br/Cl partitioning in chloride minerals in the Burns formation on Mars. Icarus 200, 436–445 (2009).

    Article  Google Scholar 

  67. Ilton, E. S., Post, J. E., Heaney, P. J., Ling, F. T. & Kerisit, S. N. XPS determination of Mn oxidation states in Mn (hydr) oxides. Appl. Surf. Sci. 366, 475–485 (2016).

    Article  Google Scholar 

  68. Cerrato, J. M., Hochella Jr, M. F., Knocke, W. R., Dietrich, A. M. & Cromer, T. F. Use of XPS to identify the oxidation state of Mn in solid surfaces of filtration media oxide samples from drinking water treatment plants. Environ. Sci. Technol. 44, 5881–5886 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by NASA Science Mission Directorate Future Investigators in NASA Earth and Space Science and Technology (FINESST) programme through award no. 80NSSC19K1521. J.G.C. was supported by the NASA Exobiology programme through award no. 80NSSC18K1292. G.J.L. was supported by the National Science Foundation Graduate Research Fellowship Program under grant no. DGE-1745038 and DGE-2139839. Discussions with B. Jolliff, R. Arvidson and J. Hurowitz improved this manuscript. P. Carpenter is thanked for assistance with XRD data collection and Rietveld refinements. R. Arvidson and A. Knight are thanked for assistance in VNIR data collection.

Author information

Authors and Affiliations

Authors

Contributions

K.M. and J.G.C. designed the study. K.M. conducted the experiments with assistance from E.L.M. G.L. contributed X-ray photoelectron spectroscopy analyses. J.G.C. and K.M. performed the thermodynamic and kinetic modeling. K.M. analyzed the results and wrote the original manuscript, with additional text provided by J.G. and further editing by G.L. and E.L.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jeffrey G. Catalano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Yasuhito Sekine and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Reaction of Martian basalt with water equilibrated with 0.5 bar CO2 and 0.03 bar O2.

(a) Relationship of dissolved CO2 and O2 concentrations to pH. (b) Mass fraction of mineral alteration productions.

Extended Data Fig. 2 Mineralogy of the solids produced by oxidation of dissolved Mn(II) by 10 mmol L−1 bromate.

XRD patterns of the solids produced by reaction of 10 mmol L−1 Mn(II) with 10 mmol L−1 bromate in 100 mmol L−1 magnesium chloride fluids. Patterns are visually offset for clarity. Diagnostic peaks are labeled and indicated with dashed lines. See Extended Data Table 4 for complete sample details.

Extended Data Fig. 3 Images of the solids produced by oxidation of dissolved Mn(II) by bromate.

Minerals precipitated following reaction in magnesium chloride (a-d) and magnesium sulfate (e and f) fluids.

Extended Data Fig. 4 Comparison of VNIR spectra of the manganese oxide mineral detected at Endeavor crater, Mars, and produced in Mn(II) oxidation experiments.

Solids produced from oxidation of dissolved Mn(II) by bromate in (a) magnesium chloride and (b) magnesium sulfate fluids. The labels indicate the initial pH of the samples. See Extended Data Table 5 for complete sample details.

Extended Data Table 1 Homogeneous and heterogeneous Mn(II) oxidation rates by oxygen
Extended Data Table 2 Fluid composition of the kinetic experiments shown in Fig. S1 with [Mn(II)] ≈ [ClO3] ≈ 100 mmol L−1
Extended Data Table 3 Fluid composition of the kinetic experiments shown in Fig. 2 with [Mn(II)] ≈ [BrO3] ≈ 100 mmol L−1
Extended Data Table 4 Fluid composition of the mineral precipitation experiments shown in Extended Data Fig. 2 with approximately 100 mmol L−1 [Mn(II)], and 10 mmol L−1 [BrO3]
Extended Data Table 5 Fluid composition of the mineral precipitation experiments shown in Fig. 3 with [Mn(II)] ≈ [BrO3] ≈ 100 mmol L−1
Extended Data Table 6 Percentage of Mn(II) oxidation in open systems buffered by 0.21 bar O2 in presence of 4 ×10−4 bar CO2 under identical conditions as the experiments with oxyhalogens

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1–4 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mitra, K., Moreland, E.L., Ledingham, G.J. et al. Formation of manganese oxides on early Mars due to active halogen cycling. Nat. Geosci. (2022). https://doi.org/10.1038/s41561-022-01094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41561-022-01094-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing