Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rates of seafloor and continental weathering govern Phanerozoic marine phosphate levels

Abstract

Phosphate is an essential macronutrient for all organisms with a key role in setting levels of marine primary productivity. Despite its importance for marine biogeochemical cycles and its role in shaping the evolution of marine organisms, the factors controlling phosphate bioavailability on geologic timescales remain poorly understood. Here we develop a statistical model of the coupled cycles of phosphate, carbon, oxygen and calcium to constrain the weathering-derived fluxes and seawater concentrations of phosphate through Phanerozoic time (541 million years ago to the present). Our model includes input parameters and time-dependent forcings derived from geologic and geochemical data. We find that the climate sensitivity of chemical weathering of the oceanic crust by low-temperature fluids exerts a first-order control on phosphate availability. Specifically, continental weathering is a source of the limiting nutrient phosphate, but seafloor weathering is considered to be a minor phosphate sink. Consequently, times in Earth history during which seafloor weathering constituted a large fraction of the total (seafloor + continental) weathering were also times during which phosphate influxes to and concentrations in the ocean were relatively low. Lower seawater phosphate levels during those times probably resulted in lower primary productivity and oceanic and atmospheric oxygen concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model scheme.
Fig. 2: Continental and seafloor weathering over the Phanerozoic.
Fig. 3: The Phanerozoic phosphate budget.
Fig. 4: The effect of climate-sensitive seafloor weathering on steady-state P fluxes.
Fig. 5: Effects of the proposed Phanerozoic evolution of the phosphate cycle on the carbon and oxygen cycles.

Similar content being viewed by others

Data availability

All study data are included in this article and/or in the Supplementary Information. Source data are provided with this paper.

Code availability

The code used in this study is available via Zenodo (https://doi.org/10.5281/zenodo.6874786).

References

  1. Holland, H. D. The Chemistry of the Atmosphere and Oceans (Wiley Interscience, 1978).

  2. Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677–692 (1994).

    Article  Google Scholar 

  3. Tyrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).

    Article  Google Scholar 

  4. Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).

    Article  Google Scholar 

  5. Volk, T. & Hoffert, M. I. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present Vol. 32 (eds Sundquist, E. & Broecker, W.) 99–110 (Wiley, 1985).

  6. Martin, R. E. Secular increase in nutrient levels through the Phanerozoic: implications for productivity, biomass, and diversity of the marine biosphere. Palaios 11, 209–219 (1996).

    Article  Google Scholar 

  7. Froelich, P. N., Bender, M. L., Luedtke, N. A., Heath, G. R. & DeVries, T. The marine phosphorus cycle. Am. J. Sci. 282, 474–511 (1982).

    Article  Google Scholar 

  8. Föllmi, K. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Sci. Rev. 40, 55–124 (1996).

    Article  Google Scholar 

  9. Ruttenberg, K. C., Heinrich, D. H. & Karl, K. T. in Treatise on Geochemistry Vol. 8 (eds Holland, H. D. & Turekian, K. K.) 585–643 (Elsevier, 2013).

  10. Compton, J. et al. in Marine Authigenesis: From Global to Microbial (eds Glenn, C. R. et al.) 21–33 (SEPM, 2000).

  11. Wheat, C. G., Feely, R. A. & Mottl, M. J. Phosphate removal by oceanic hydrothermal processes: an update of the phosphorus budget in the oceans. Geochim. Cosmochim. Acta 60, 3593–3608 (1996).

    Article  Google Scholar 

  12. Wheat, C. G., McManus, J., Mottl, M. J. & Giambalvo, E. Oceanic phosphorus imbalance: magnitude of the mid-ocean ridge flank hydrothermal sink. Geophys. Res. Lett. 30, 1895 (2003).

  13. Wheat, C. G. & Fisher, A. T. Massive, low-temperature hydrothermal flow from a basaltic outcrop on 23 Ma seafloor of the Cocos Plate: chemical constraints and implications. Geochem. Geophys. Geosyst. 9, Q12014 (2008).

  14. Alt, J. C. & Teagle, D. A. The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).

    Article  Google Scholar 

  15. Brady, P. V. & Gislason, S. R. Seafloor weathering controls on atmospheric CO2 and global climate. Geochim. Cosmochim. Acta 61, 965–973 (1997).

    Article  Google Scholar 

  16. Crovisier, J. L., Honnorez, J. & Eberhart, J. P. Dissolution of basaltic glass in seawater: Mechanism and rate. Geochim. Cosmochim. Acta 51, 2977–2990 (1987).

    Article  Google Scholar 

  17. Dorn, R. I. & Brady, P. V. Rock-based measurement of temperature-dependent plagioclase weathering. Geochim. Cosmochim. Acta 59, 2847–2852 (1995).

    Article  Google Scholar 

  18. Li, G. et al. Temperature dependence of basalt weathering. Earth Planet. Sci. Lett. 443, 59–69 (2016).

    Article  Google Scholar 

  19. Dessert, C., Dupré, B., Gaillardet, J., François, L. M. & Allegre, C. J. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202, 257–273 (2003).

    Article  Google Scholar 

  20. Gislason, S. R. et al. Direct evidence of the feedback between climate and weathering. Earth Planet. Sci. Lett. 277, 213–222 (2009).

    Article  Google Scholar 

  21. West, A. J., Galy, A. & Bickle, M. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235, 211–228 (2005).

    Article  Google Scholar 

  22. Gillis, K. M. & Coogan, L. A. Secular variation in carbon uptake into the ocean crust. Earth Planet. Sci. Lett. 302, 385–392 (2011).

    Article  Google Scholar 

  23. Coogan, L. A. & Dosso, S. E. Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater. Earth Planet. Sci. Lett. 415, 38–46 (2015).

    Article  Google Scholar 

  24. Coogan, L. A. & Gillis, K. M. Evidence that low-temperature oceanic hydrothermal systems play an important role in the silicate–carbonate weathering cycle and long-term climate regulation. Geochem. Geophys. Geosyst. 14, 1771–1786 (2013).

    Article  Google Scholar 

  25. Krissansen-Totton, J. & Catling, D. C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 8, 15423 (2017).

    Article  Google Scholar 

  26. Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc. Natl Acad. Sci. USA 115, 4105–4110 (2018).

    Article  Google Scholar 

  27. Walker, J. C., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).

    Article  Google Scholar 

  28. Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Article  Google Scholar 

  29. Francois, L. M. & Walker, J. C. Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic ratio of seawater. Am. J. Sci. 292, 81–135 (1992).

    Article  Google Scholar 

  30. Sleep, N. H. & Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. 106, 1373–1399 (2001).

    Article  Google Scholar 

  31. Berner, R. A. A model for calcium, magnesium and sulfate in seawater over Phanerozoic time. Am. J. Sci. 304, 438–453 (2004).

    Article  Google Scholar 

  32. Mills, B. J., Lenton, T. M. & Watson, A. J. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering. Proc. Natl Acad. Sci. USA 111, 9073–9078 (2014).

    Article  Google Scholar 

  33. Taylor, L. L. et al. Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7, 171–191 (2009).

    Article  Google Scholar 

  34. Kenrick, P., Wellman, C. H., Schneider, H. & Edgecombe, G. D. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Phil. Trans. R. Soc. B. 367, 519–536 (2012).

    Article  Google Scholar 

  35. Goddéris, Y. & Joachimski, M. M. Global change in the Late Devonian: modelling the Frasnian–Famennian short-term carbon isotope excursions. Palaeogeogr. Palaeoecol. 202, 309–329 (2004).

    Article  Google Scholar 

  36. Staudigel, H., Hart, S. R., Schmincke, H.-U. & Smith, B. M. Cretaceous ocean crust at DSDP sites 417 and 418: carbon uptake from weathering versus loss by magmatic outgassing. Geochim. Cosmochim. Acta 53, 3091–3094 (1989).

    Article  Google Scholar 

  37. Alt, J. C. in Hydrogeology of the Ocean Lithosphere Vol. 1 (eds Davis, E. E. & Elderfield, H.) 495–433 (Cambridge Univ. Press, 2004).

  38. Wang, R. et al. The coupling of Phanerozoic continental weathering and marine phosphorus cycle. Sci. Rep. 10, 5794 (2020).

    Article  Google Scholar 

  39. Goddéris, Y. et al. Paleogeographic forcing of the strontium isotopic cycle in the Neoproterozoic. Gondwana Res. 42, 151–162 (2017).

    Article  Google Scholar 

  40. Racki, G. & Cordey, F. Radiolarian palaeoecology and radiolarites: is the present the key to the past? Earth Sci. Rev. 52, 83–120 (2000).

    Article  Google Scholar 

  41. Katz, M. E., Finkel, Z. V., Grzebyk, D., Knoll, A. H. & Falkowski, P. G. Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annu. Rev. Ecol. Evol. Syst. 35, 523–556 (2004).

    Article  Google Scholar 

  42. Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).

    Article  Google Scholar 

  43. Schwark, L. & Empt, P. Sterane biomarkers as indicators of Palaeozoic algal evolution and extinction events. Palaeogeogr. Palaeoecol. 240, 225–236 (2006).

    Article  Google Scholar 

  44. Tilman, D., Kilham, S. S. & Kilham, P. Phytoplankton community ecology: the role of limiting nutrients. Annu. Rev. Ecol. Syst. 13, 349–372 (1982).

    Article  Google Scholar 

  45. Ho, T.-Y. et al. The elemental composition of some marine phytoplankton. J. Phycol. 39, 1145–1159 (2003).

    Article  Google Scholar 

  46. Quigg, A. et al. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291–294 (2003).

    Article  Google Scholar 

  47. Quigg, A., Irwin, A. J. & Finkel, Z. V. Evolutionary inheritance of elemental stoichiometry in phytoplankton. Proc. R. Soc. B 278, 526–534 (2011).

    Article  Google Scholar 

  48. Kipp, M., Krissansen-Totton, J. & Catling, D. C. High burial efficiency is required to explain mass balance in Earth’s early carbon cycle. Glob. Biogeochem. Cycles 35, e2020GB006707 (2020).

  49. Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161, 181–198 (1999).

    Article  Google Scholar 

  50. Saltzman, M. R., Thomas, E. & Gradstein, F. M. in The Geologic Time Scale Vol. 1 (eds Gradstein, F. et al.) 207–232 (Elsevier, 2012).

  51. Daines, S. J., Mills, B. J. & Lenton, T. M. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat. Commun. 8, 14379 (2017).

    Article  Google Scholar 

  52. Dahl, T. W. et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc. Natl Acad. Sci. USA 107, 17911–17915 (2010).

    Article  Google Scholar 

  53. Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451 (2015).

    Article  Google Scholar 

  54. Stolper, D. A. & Keller, C. B. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553, 323–327 (2018).

    Article  Google Scholar 

  55. Lenton, T. M., Daines, S. J. & Mills, B. J. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).

    Article  Google Scholar 

  56. Coogan, L. A. & Gillis, K. M. Temperature dependence of chemical exchange during seafloor weathering: insights from the Troodos ophiolite. Geochim. Cosmochim. Acta 243, 24–41 (2018).

    Article  Google Scholar 

  57. Coogan, L. A. & Gillis, K. M. Low-temperature alteration of the seafloor: impacts on ocean chemistry. Annu. Rev. Earth Planet. Sci. 46, 21–45 (2018).

    Article  Google Scholar 

  58. Ruttenberg, K. C. & Berner, R. A. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim. Cosmochim. Acta 57, 991–1007 (1993).

    Article  Google Scholar 

  59. Berner, E. K. & Berner, R. A. Global Environment: Water, Air, and Geochemical Cycles (Princeton Univ. Press, 1996).

  60. Filippelli, G. M. & Delaney, M. L. Phosphorus geochemistry of equatorial Pacific sediments. Geochim. Cosmochim. Acta 60, 1479–1495 (1996).

    Article  Google Scholar 

  61. Baturin, G. Phosphorus cycle in the ocean. Lithol. Miner. Resour. 38, 101–119 (2003).

    Article  Google Scholar 

  62. Feely, R. A. et al. The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific. Earth Planet. Sci. Lett. 96, 305–318 (1990).

    Article  Google Scholar 

  63. Froelich, P. N., Bender, M. L. & Heath, G. R. Phosphorus accumulation rates in metalliferous sediments on the East Pacific Rise. Earth Planet. Sci. Lett. 34, 351–359 (1977).

    Article  Google Scholar 

  64. Yuan, Z. et al. Human perturbation of the global phosphorus cycle: changes and consequences. Environ. Sci. Technol. 52, 2438–2450 (2018).

    Article  Google Scholar 

  65. Slomp, C. & Cappellen, P. V. The global marine phosphorus cycle: sensitivity to oceanic circulation. Biogeosci 4, 155–171 (2007).

    Article  Google Scholar 

  66. Ingall, E. D., Bustin, R. & Van Cappellen, P. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim. Cosmochim. Acta 57, 303–316 (1993).

    Article  Google Scholar 

  67. Hartmann, J., Moosdorf, N., Lauerwald, R., Hinderer, M. & West, A. J. Global chemical weathering and associated P-release—the role of lithology, temperature and soil properties. Chem. Geol. 363, 145–163 (2014).

    Article  Google Scholar 

  68. Berner, R. A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282, 451-473 (1982).

  69. Schlünz, B. & Schneider, R. R. Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux and burial rates. Int. J. Earth Sci. 88, 599–606 (2000).

    Article  Google Scholar 

  70. Burdige, D. J. Burial of terrestrial organic matter in marine sediments: a reassessment. Glob. Biogeochem. Cycles 19, GB4011 (2005).

    Article  Google Scholar 

  71. Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 221–230 (1958).

    Google Scholar 

  72. Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeoc. Cycles 8, 65–80 (1994).

    Article  Google Scholar 

  73. Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).

    Article  Google Scholar 

  74. Geider, R. J. & La Roche, J. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).

    Article  Google Scholar 

  75. Ingall, E. D. & Van Cappellen, P. Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments. Geochim. Cosmochim. Acta 54, 373–386 (1990).

    Article  Google Scholar 

  76. Slomp, C. P., Thomson, J. & de Lange, G. J. Controls on phosphorus regeneration and burial during formation of eastern Mediterranean sapropels. Mar. Geol. 203, 141–159 (2004).

    Article  Google Scholar 

  77. Sak, P. B., Fisher, D. M., Gardner, T. W., Murphy, K. & Brantley, S. L. Rates of weathering rind formation on Costa Rican basalt. Geochim. Cosmochim. Acta 68, 1453–1472 (2004).

    Article  Google Scholar 

  78. Bach, W., Peucker-Ehrenbrink, B., Hart, S. R. & Blusztajn, J. S. Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B: implications for seawater–crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochem. Geophys. Geosyst. 4, 1–29 (2003).

  79. Alt, J. C., Honnorez, J., Laverne, C. & Emmermann, R. Hydrothermal alteration of a 1 km section through the upper oceanic crust, DSDP Hole 504B: Mineralogy, chemistry and evolution of seawater–basalt interactions. J. Geophys. Res. Solid Earth 91, 10309–10335 (1986).

    Article  Google Scholar 

  80. Laverne, C., Agrinier, P., Hermitte, D. & Bohn, M. Chemical fluxes during hydrothermal alteration of a 1200-m long section of dikes in the oceanic crust, DSDP/ODP Hole 504B. Chem. Geol. 181, 73–98 (2001).

    Article  Google Scholar 

  81. Spivack, A. J. & Staudigel, H. Low-temperature alteration of the upper oceanic crust and the alkalinity budget of seawater. Chem. Geol. 115, 239–247 (1994).

    Article  Google Scholar 

  82. Bednarz, U. & Schmincke, H.-U. Mass transfer during subseafloor alteration of the upper Troodos crust (Cyprus). Contrib. Mineral. Petrol. 102, 93–101 (1989).

    Article  Google Scholar 

  83. Navarre-Sitchler, A. & Thyne, G. Effects of carbon dioxide on mineral weathering rates at Earth surface conditions. Chem. Geol. 243, 53–63 (2007).

    Article  Google Scholar 

  84. Harmon, R. S., White, W. B., Drake, J. J. & Hess, J. W. Regional hydrochemistry of North American carbonate terrains. Water Resour. Res. 11, 963–967 (1975).

    Article  Google Scholar 

  85. Goddéris, Y., Donnadieu, Y., Lefebvre, V., Le Hir, G. & Nardin, E. Tectonic control of continental weathering, atmospheric CO2, and climate over Phanerozoic times. C. R. Geosci. 344, 652–662 (2012).

    Article  Google Scholar 

  86. White, A. F. & Blum, A. E. Effects of climate on chemical weathering in watersheds. Geochim. Cosmochim. Acta 59, 1729–1747 (1995).

    Article  Google Scholar 

  87. Rasmussen, C. et al. Strong climate and tectonic control on plagioclase weathering in granitic terrain. Earth Planet. Sci. Lett. 301, 521–530 (2011).

    Article  Google Scholar 

  88. Oliva, P., Viers, J. & Dupré, B. Chemical weathering in granitic environments. Chem. Geol. 202, 225–256 (2003).

    Article  Google Scholar 

  89. Yadav, S. K. & Chakrapani, G. J. Geochemistry, dissolved elemental flux rates, and dissolution kinetics of lithologies of Alaknanda and Bhagirathi rivers in Himalayas, India. Environ. Earth Sci. 62, 593–610 (2011).

    Article  Google Scholar 

  90. Meybeck, M. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 287, 401–428 (1987).

    Article  Google Scholar 

  91. Gaillardet, J., Dupré, B., Louvat, P. & Allegre, C. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).

    Article  Google Scholar 

  92. Amiotte Suchet, P., Probst, J.-L. & Ludwig, W. Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob. Biogeochem. Cycles 17, 1038 (2003).

  93. Munhoven, G. Glacial–interglacial changes of continental weathering: estimates of the related CO2 and HCO−3 flux variations and their uncertainties. Glob. Planet. Change 33, 155–176 (2002).

    Article  Google Scholar 

  94. Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S. & Köhler, P. Global CO2 consumption by chemical weathering: what is the contribution of highly active weathering regions? Glob. Planet. Change 69, 185–194 (2009).

    Article  Google Scholar 

  95. Chang, S. & Berner, R. A. Coal weathering and the geochemical carbon cycle. Geochim. Cosmochim. Acta 63, 3301–3310 (1999).

    Article  Google Scholar 

  96. Gerlach, T. M. Degassing of carbon dioxide from basaltic magma at spreading centers: II. mid-oceanic ridge basalts. J. Volcanol. Geotherm. Res. 39, 221–232 (1989).

    Article  Google Scholar 

  97. Gerlach, T. M. Present-day CO2 emissions from volcanos. Eos 72, 249–255 (1991).

    Article  Google Scholar 

  98. Le Voyer, M. et al. Carbon fluxes and primary magma CO2 contents along the global mid-ocean ridge system. Geochem. Geophys. 20, 1387–1424 (2019).

    Article  Google Scholar 

  99. Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002).

    Article  Google Scholar 

  100. Hauri, E. H. et al. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 237–275 (Cambridge Univ. Press, 2019).

  101. Werner, C. et al. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 188–236 (Cambridge Univ. Press, 2019).

  102. Holloway, J. R. Graphite-melt equilibria during mantle melting: constraints on CO2 in MORB magmas and the carbon content of the mantle. Chem. Geol. 147, 89–97 (1998).

    Article  Google Scholar 

  103. Cartigny, P., Jendrzejewski, N., Pineau, F., Petit, E. & Javoy, M. Volatile (C, N, Ar) variability in MORB and the respective roles of mantle source heterogeneity and degassing: the case of the Southwest Indian Ridge. Earth Planet. Sci. Lett. 194, 241–257 (2001).

    Article  Google Scholar 

  104. Javoy, M. & Pineau, F. The volatiles record of a popping rock from the mid-Atlantic ridge at 14° N: chemical and isotopic composition of gas trapped in the vesicles. Earth Planet. Sci. Lett. 107, 598–611 (1991).

    Article  Google Scholar 

  105. Sarda, P. & Graham, D. Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth Planet. Sci. Lett. 97, 268–289 (1990).

    Article  Google Scholar 

  106. Des Marais, D. J. & Moore, J. G. Carbon and its isotopes in mid-oceanic basaltic glasses. Earth Planet. Sci. Lett. 69, 43–57 (1984).

    Article  Google Scholar 

  107. Corliss, J. B. et al. Submarine thermal springs on the Galapagos Rift. Science 203, 1073–1083 (1979).

    Article  Google Scholar 

  108. Tucker, J. M., Mukhopadhyay, S. & Gonnermann, H. M. Reconstructing mantle carbon and noble gas contents from degassed mid-ocean ridge basalts. Earth Planet. Sci. Lett. 496, 108–119 (2018).

    Article  Google Scholar 

  109. Marty, B. & Tolstikhin, I. N. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem. Geol. 145, 233–248 (1998).

    Article  Google Scholar 

  110. Varekamp, J., Kreulen, R., Poorter, R. & Van Bergen, M. Carbon sources in arc volcanism, with implications for the carbon cycle. Terra Nova 4, 363–373 (1992).

    Article  Google Scholar 

  111. Le Cloarec, M.-F. & Marty, B. Volatile fluxes from volcanoes. Terra Nova 3, 17–27 (1991).

    Article  Google Scholar 

  112. Marty, B. & Zimmermann, L. Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assessment of shallow-level fractionation and characterization of source composition. Geochim. Cosmochim. Acta 63, 3619–3633 (1999).

    Article  Google Scholar 

  113. Marty, B. & Jambon, A. C3He in volatile fluxes from the solid Earth: implications for carbon geodynamics. Earth Planet. Sci. Lett. 83, 16–26 (1987).

    Article  Google Scholar 

  114. Graham, D. & Sarda, P. Reply to comment by T.M. Gerlach on: Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth Planet. Sci. Lett. 105, 568–573 (1991).

    Article  Google Scholar 

  115. Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    Article  Google Scholar 

  116. Resing, J. A., Lupton, J. E., Feely, R. A. & Lilley, M. D. CO2 and 3He in hydrothermal plumes: implications for mid-ocean ridge CO2 flux. Earth Planet. Sci. Lett. 226, 449–464 (2004).

    Article  Google Scholar 

  117. Fischer, T. P. et al. Focussed degassing of stored continental deep carbon. Am. Geophys. Union Fall Meeting 2019, abstr. DI41B–02 (2019).

  118. Allard, P. Diffuse Degassing of Carbon Dioxide Through Volcanic Systems: Observed Facts and Implications Report 279 (Geological Survey of Japan, 1992).

  119. Marty, B., Jambon, A. & Sano, Y. Helium isotopes and CO2 in volcanic gases of japan. Chem. Geol. 76, 25–40 (1989).

    Article  Google Scholar 

  120. Williams, S. N., Schaefer, S. J., Calvache, V. M. L. & Lopez, D. Global carbon dioxide emission to the atmosphere by volcanoes. Geochim. Cosmochim. Acta 56, 1765–1770 (1992).

    Article  Google Scholar 

  121. Shinohara, H. Volatile flux from subduction zone volcanoes: insights from a detailed evaluation of the fluxes from volcanoes in Japan. J. Volcanol. Geother. Res. 268, 46–63 (2013).

    Article  Google Scholar 

  122. Fischer, T. P. Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochem. J. 42, 21–38 (2008).

    Article  Google Scholar 

  123. Kagoshima, T. et al. Sulphur geodynamic cycle. Sci. Rep. 5, 8330 (2015).

    Article  Google Scholar 

  124. Sano, Y. & Williams, S. N. Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys. Res. Lett. 23, 2749–2752 (1996).

    Article  Google Scholar 

  125. Le Guern, F. Les débits de CO2 et de SO2 volcaniques dans látmosphére. Bull. Volcanol. 45, 197–202 (1982).

    Article  Google Scholar 

  126. Marty, B. & Le Cloarec, M.-F. Helium 3 and CO2 fluxes from subaerial volcanoes estimated from polonium-210 emissions. J. Volcanol. Geoth. Res. 53, 67–72 (1992).

    Article  Google Scholar 

  127. Mason, E., Edmonds, M. & Turchyn, A. V. Remobilization of crustal carbon may dominate volcanic arc emissions. Science 357, 290–294 (2017).

    Article  Google Scholar 

  128. Cartapanis, O., Galbraith, E. D., Bianchi, D. & Jaccard, S. L. Carbon burial in deep-sea sediment and implications for oceanic inventories of carbon and alkalinity over the last glacial cycle. Clim. Past 14, 1819–1850 (2018).

    Article  Google Scholar 

  129. Deines, P. in Handbook of Environmental Isotope Geochemistry Vol. 1 (eds Fritz, P. & Fontes, J.-C.) 329–406 (Elsevier, 1980).

  130. Mook, W. 13C in atmospheric CO2. Neth. J. Sea Res. 20, 211–223 (1986).

    Article  Google Scholar 

  131. Gensel, P. G. The earliest land plants. Annu. Rev. Ecol. Evol. Syst. 39, 459–477 (2008).

    Article  Google Scholar 

  132. Crane, P. R. & Lidgard, S. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).

    Article  Google Scholar 

  133. Friis, E. M., Pedersen, K. R. & Crane, P. R. Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr. Palaeoecol. 232, 251–293 (2006).

    Article  Google Scholar 

  134. Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Godderis, Y. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. Am. J. Sci. 314, 1259–1283 (2014).

    Article  Google Scholar 

  135. Gaffin, S. Ridge volume dependence on seafloor generation rate and inversion using long term sealevel change. Am. J. Sci. 287, 596–611 (1987).

    Article  Google Scholar 

  136. Park, J. & Royer, D. L. Geologic constraints on the glacial amplification of Phanerozoic climate sensitivity. Am. J. Sci. 311, 1–26 (2011).

    Article  Google Scholar 

  137. Royer, D. L., Pagani, M. & Beerling, D. J. Geobiological constraints on Earth system sensitivity to CO2 during the Cretaceous and Cenozoic. Geobiology 10, 298–310 (2012).

    Article  Google Scholar 

  138. Berner, R. A. & Kothavala, Z. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).

    Article  Google Scholar 

  139. Ronov, A. B. Stratisfera, ili, Osadochnaia obolochka Zemli: kolichestvennoe issledovanie (Nauka, 1993).

  140. Bluth, G. J. S. & Kump, L. Phanerozoic paleogeology. Am. J. Sci. 291, 284–308 (1991).

    Article  Google Scholar 

  141. Berner, R. A. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci. 306, 295–302 (2006).

    Article  Google Scholar 

  142. Mills, B., Daines, S. J. & Lenton, T. M. Changing tectonic controls on the long-term carbon cycle from Mesozoic to present. Geochem. Geophys. Geosyst. 15, 4866–4884 (2014).

    Article  Google Scholar 

  143. Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. First plants cooled the Ordovician. Nat. Geosci. 5, 86–89 (2012).

    Article  Google Scholar 

  144. Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

    Article  Google Scholar 

  145. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

Download references

Acknowledgements

We thank the Interuniversity Institute for Marine Sciences in Eilat for hosting S.S.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and I.H. conceived the study, developed and analysed the model and wrote the paper.

Corresponding authors

Correspondence to Shlomit Sharoni or Itay Halevy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Eva Stüeken and Forrest Horton for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison between prior and posterior probability distributions of the model parameters.

Dashed-red distributions are the prior distributions from which the parameter values were drawn. Bars represent posterior probability distributions obtained in 106 model simulations. The posterior distributions reflect parameter combinations that yield model-measurement agreement for present-day values of state variables (for example, P concentration, pCO2, see variables and criteria in Supplementary Table 8). For parameter definitions, see Extended Data Table 2.

Extended Data Fig. 2 Time-dependent forcings.

See Extended Data Table 3 for description of these arrays. (a) Weathering enhancement due to land-plant evolution (fE). fE was drawn from uniform distributions at any given time, where the boundaries of the uniform distribution change over time to account for the evolution of land plants described in Section 2.1, SI. (b) The effect of paleogeography on runoff throughout the Phanerozoic (fPG, Section 2.2, SI). (c) The seafloor spreading rate (fSF, Section 2.3, SI). (d) A time-dependent forcing that accounts for the enhancement of the climate sensitivity during cold periods (fglac, Section 2.4, SI). fglac is drawn from a uniform distribution between unity and two when there is evidence for long-lived glaciations, and is set to unity over the rest of the Phanerozoic. (e) The effect of continental configuration, latitude and vegetation cover on surface albedo, and consequently, on average continental temperature (Tgeog, Section 2.5, SI). Tgeog is drawn from a normal distribution, where the mean was adopted from Goddéris et al. (2012)85, and the standard deviation was adopted from the range of climate predictions associated with the CMIP5 models145. (f) Uplift (fU, Section 2.6, SI). (g) Land area (fA, Section 2.7, SI). (h) The fraction of land area covered by carbonates (fL, Section 2.7, SI). (i) The effect of volcanic land cover on continental weatherability (fvolc, Section 2.8, SI). (j) A time-dependent forcing that represents the colonization and expansion of terrestrial biomass (fcland, Section 2.9, SI). fcland was drawn from uniform distributions at any given time, where the boundaries of the uniform distribution change over time to account for the evolution of land plants described in the SI. (k) The effect of the evolution of pelagic calcifiers on CaCO3 subduction (fC, Section 2.10, SI). All the time-dependent variables are unitless, and normalized to the present day. Unless mentioned otherwise, all the time-dependent variables were drawn from normal distributions, where the mean was adopted from different sources (black lines, SI), and 2σ is taken to be 25% of the mean (the upper and lower boundaries of the gray shaded area).

Extended Data Fig. 3 Results of 106 default model simulations (as in Fig. 2, frequency in color contours).

(a) Temperature (K), (b) CaCO3 burial rate (Fbcarb, TmolC yr−1), and (c) oxidative weathering rate (Fworg, TmolC yr−1). (d) Comparison between model δ13C predictions and a compilation of δ13C values in marine carbonate rocks. The median of the model predictions of the δ13C (‰, PDB) is shown by a black dashed line and the 5th to 95th percentiles of the results are presented as a gray envelope. The carbonate δ13C compilation 50 is shown in light blue markers. A 10-Myr moving average through the δ13C compilation (cyan line) is shown with 1σ (blue lines) and 2σ (red lines) uncertainty. (e) Comparison between model pCO2 predictions and proxy pCO2 data. The model predictions of atmospheric pCO2 (ppm) are presented as color contours. Proxy reconstructions of pCO2 are shown in the gray envelope (representing the 5th to 95th percentiles), and the solid black line is the median144. For the definitions of the model outputs, see Extended Data Table 1.

Source data

Extended Data Table 1 Model outputs
Extended Data Table 2 Model parameters
Extended Data Table 3 Time-dependent forcings
Extended Data Table 4 Global rates of carbon uptake into the upper oceanic crust

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Tables 1–9, Methods and references.

Source data

Source Data Fig. 2

Row model output used to plot Fig. 2.

Source Data Fig. 3

Row model output used to plot Fig. 3.

Source Data Fig. 5

Row model output used to plot Fig. 5.

Source Data Extended Data Fig. 3

Row model output used to plot Extended Data Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharoni, S., Halevy, I. Rates of seafloor and continental weathering govern Phanerozoic marine phosphate levels. Nat. Geosci. 16, 75–81 (2023). https://doi.org/10.1038/s41561-022-01075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-01075-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing