Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formation of oxidized sulfur-rich magmas in Neoarchaean subduction zones

Abstract

Oxidized, sulfur-rich arc magmas are ubiquitous in modern subduction-zone environments. These magmas are thought to form when the fluids released during prograde metamorphism of subducting oceanic crust and overlying sediments oxidize and hydrate the asthenospheric mantle. In contrast, Archaean arc-type magmas are thought to be relatively reduced and sulfur poor, owing to the lower concentrations of marine sulfate and limited oxidative seafloor alteration in the anoxic ocean before the Great Oxidation Event some 2.4 billion years ago (Ga). Here we measure the total sulfur concentration and relative abundances of S6+, S4+ and S2− in zircon-hosted apatite grains from sodic and potassic intrusive rocks from the ~2.7 Ga southeastern Superior Province, Canada. We find that, rather than being reduced and sulfur poor, the sulfur budget of the Neoarchaean magmas was dominated by S6+ and abruptly increased to concentrations comparable to Phanerozoic arc magmas following the interpreted onset of subduction at approximately 2.7 Ga, coincident with the first global pulse of crust generation. These findings indicate that oxidized, sulfur-rich magmas formed in subduction zones independent of ocean redox state and could have influenced oceanic–atmospheric and metallogenic evolution in the Neoarchaean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The time-constrained apatite sulfur data and the estimated oxygen fugacity values for representative intrusive rocks from the southeastern Superior Province.
Fig. 2: Plots of apatite sulfur contents, sulfate ratios and the magmatic \(f_{\mathrm{O}_2}\) values against zircon 18O stable isotope ratios and the crustal thickness.
Fig. 3: Schematic cartoon models illustrating two main contrasting tectonomagmatic regimes operated in the southeastern Superior Province (not to scale).

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at https://doi.org/10.5281/zenodo.7151046.

References

  1. Edmonds, M. & Wallace, P. J. Volatiles and exsolved vapor in volcanic systems. Elements 13, 29–34 (2017).

    Article  Google Scholar 

  2. Wallace, P. J. & Edmonds, M. The sulfur budget in magmas: evidence from melt inclusions, submarine glasses, and volcanic gas emissions. Rev. Mineral. Geochem. 73, 215–246 (2011).

    Article  Google Scholar 

  3. Richards, J. P. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos 233, 27–45 (2015).

    Article  Google Scholar 

  4. Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011).

    Article  Google Scholar 

  5. Kelley, K. A. & Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 325, 605–607 (2009).

    Article  Google Scholar 

  6. Evans, K. A., Elburg, M. A. & Kamenetsky, V. S. Oxidation state of subarc mantle. Geology 40, 783–786 (2012).

    Article  Google Scholar 

  7. Evans, K. A. & Tomkins, A. G. The relationship between subduction zone redox budget and arc magma fertility. Earth Planet. Sci. Lett. 308, 401–409 (2011).

    Article  Google Scholar 

  8. Cottrell, E. et al. in Magma Redox Geochemistry (eds Moretti, R., & Neuville, D.) 33–61 (John Wiley & Sons, 2021).

  9. Stolper, D. A. & Bucholz, C. E. Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels. Proc. Natl Acad. Sci. USA 116, 8746–8755 (2019).

    Article  Google Scholar 

  10. Prouteau, G. & Scaillet, B. Experimental constraints on sulphur behaviour in subduction zones: implications for TTG and adakite production and the global sulphur cycle since the Archean. J. Petrol. 54, 183–213 (2012).

    Article  Google Scholar 

  11. Meng, X. et al. Oxidized sulfur-rich arc magmas formed porphyry Cu deposits by 1.88 Ga. Nat. Commun. 12, 2189 (2021).

    Article  Google Scholar 

  12. Meng, X. et al. Variable modes of formation for tonalite–trondhjemite–granodiorite–diorite (TTG)-related porphyry-type Cu ± Au deposits in the Neoarchean Southern Abitibi Subprovince (Canada): evidence from petrochronology and oxybarometry. J. Petrol. https://doi.org/10.1093/petrology/egab079 (2021).

  13. Cawood, P. A., Kroner, A. & Pisarevsky, S. Precambrian plate tectonics: criteria and evidence. GSA Today 16, 4–11 (2006).

    Article  Google Scholar 

  14. Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2374 (2002).

    Article  Google Scholar 

  15. Stolper, D. A. & Keller, C. B. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553, 323–327 (2018).

    Article  Google Scholar 

  16. Laurent, O., Martin, H., Moyen, J. F. & Doucelance, R. The diversity and evolution of late-Archean granitoids: evidence for the onset of ‘modern-style’ plate tectonics between 3.0 and 2.5 Ga. Lithos 205, 208–235 (2014).

    Article  Google Scholar 

  17. Cawood, P. A. et al. Geological archive of the onset of plate tectonics. Philos. Trans. R. Soc. A 376, 20170405 (2018).

    Article  Google Scholar 

  18. Percival, J. A. in Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods (ed Goodfellow, W.D.) Special Publication No. 5 903–928 (Geological Association of Canada, Mineral Deposits Division, 2007).

  19. Cherniak, D. J. & Watson, E. B. Diffusion in zircon. Rev. Mineral. Geochem. 53, 113–143 (2003).

    Article  Google Scholar 

  20. Tang, H., Bell, E. A., Boehnke, P., Barboni, M. & Harrison, T. M. in AGU Fall Meeting Abstracts V21B-02 (American Geophysical Union, 2017).

  21. Van Hunen, J. & Moyen, J. F. Archean subduction: fact or fiction? Annu. Rev. Earth Planet. Sci. 40, 195–219 (2012).

    Article  Google Scholar 

  22. Mole, D. R. et al. The formation of Neoarchean continental crust in the south-east Superior Craton by two distinct geodynamic processes. Precambrian Res. 356, 106104 (2021).

    Article  Google Scholar 

  23. Moyen, J. F. & van Hunen, J. Short-term episodicity of Archaean plate tectonics. Geology 40, 451–454 (2012).

    Article  Google Scholar 

  24. Beakhouse, G. P. The Abitibi Subprovince Plutonic Record: Tectonic and Metallogenic Implications Open File 6268 (Ontario Geological Survey, 2011).

  25. Dubé, B. & Mercier-Langevin, P. Gold deposits of the Archean Abitibi greenstone belt. Can. Soc. Econ. Geol. Spec. Publ. 23, 669–708 (2020).

    Google Scholar 

  26. Wyman, D. A., Kerrich, R. & Polat, A. Assembly of Archean cratonic mantle lithosphere and crust: plume–arc interaction in the Abitibi–Wawa subduction–accretion complex. Precambrian Res. 115, 37–62 (2002).

    Article  Google Scholar 

  27. Chown, E. H., Harrap, R. & Moukhsil, A. The role of granitic intrusions in the evolution of the Abitibi belt, Canada. Precambrian Res. 115, 291–310 (2002).

    Article  Google Scholar 

  28. Feng, R. & Kerrich, R. Geobarometry, differential block movements, and crustal, structure of the southwestern Abitibi greenstone belt, Canada. Geology 18, 870–873 (1990).

    Article  Google Scholar 

  29. Katz, L. R., Kontak, D. J., Dubé, B. & McNicoll, V. The geology, petrology, and geochronology of the Archean Côté Gold large-tonnage, low-grade intrusion-related Au(–Cu) deposit, Swayze greenstone belt, Ontario, Canada. Can. J. Earth Sci. 54, 173–202 (2017).

    Article  Google Scholar 

  30. Beakhouse, G. P. & Davis, D. W. Evolution and tectonic significance of intermediate to felsic plutonism associated with the Hemlo greenstone belt, Superior Province, Canada. Precambrian Res. 137, 61–92 (2005).

    Article  Google Scholar 

  31. Piccoli, P. & Candela, P. Apatite in felsic rocks: a model for the estimation of initial halogen concentrations in the Bishop tuff (Long Valley) and Tuolumne intrusive suite (Sierra Nevada batholith) magmas. Am. J. Sci. 294, 92–135 (1994).

    Article  Google Scholar 

  32. Hanchar, J. M. & Watson, E. B. Zircon saturation thermometry. Rev. Mineral. Geochem. 53, 89–112 (2003).

    Article  Google Scholar 

  33. Ferry, J. M. & Watson, E. B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 154, 429–437 (2007).

    Article  Google Scholar 

  34. Konecke, B. A., Fiege, A., Simon, A. C., Linsler, S. & Holtz, F. An experimental calibration of a sulfur-in-apatite oxybarometer for mafic systems. Geochim. Cosmochim. Acta 265, 242–258 (2019).

    Article  Google Scholar 

  35. Parat, F. & Holtz, F. Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions. Contrib. Mineral. Petrol. 147, 201–212 (2004).

    Article  Google Scholar 

  36. Richards, J. P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 40, 1–26 (2011).

    Article  Google Scholar 

  37. Burgisser, A. & Scaillet, B. Redox evolution of a degassing magma rising to the surface. Nature 445, 194–197 (2007).

    Article  Google Scholar 

  38. Bell, A. S. & Simon, A. Experimental evidence for the alteration of the Fe3+/ΣFe of silicate melt caused by the degassing of chlorine-bearing aqueous volatiles. Geology 39, 499–502 (2011).

    Article  Google Scholar 

  39. Klimm, K., Kohn, S. C. & Botcharnikov, R. E. The dissolution mechanism of sulphur in hydrous silicate melts. II: solubility and speciation of sulphur in hydrous silicate melts as a function of fO2. Chem. Geol. 322, 250–267 (2012).

    Article  Google Scholar 

  40. Moretti, R. in Magma Redox Geochemistry (eds Moretti, R., & Neuville, D.) 115–138 (John Wiley & Sons, 2021).

  41. Tang, M., Lee, C. T. A., Ji, W. Q., Wang, R. & Costin, G. Crustal thickening and endogenic oxidation of magmatic sulfur. Sci. Adv. 6, eaba6342 (2020).

    Article  Google Scholar 

  42. Loucks, R. R. Deep entrapment of buoyant magmas by orogenic tectonic stress: its role in producing continental crust, adakites, and porphyry copper deposits. Earth Sci. Rev. 220, 103744 (2021).

    Article  Google Scholar 

  43. Laurent, O. et al. Earth’s earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions. Nat. Geosci. 13, 163–169 (2020).

    Article  Google Scholar 

  44. Smithies, R. H. et al. No evidence for high-pressure melting of Earth’s crust in the Archean. Nat. Commun. 10, 5559 (2019).

    Article  Google Scholar 

  45. Pourteau, A. et al. TTG generation by fluid-fluxed crustal melting: direct evidence from the Proterozoic Georgetown inlier, NE Australia. Earth Planet. Sci. Lett. 550, 116548 (2020).

    Article  Google Scholar 

  46. Jamieson, J. W., Wing, B. A., Farquhar, J. & Hannington, M. D. Neoarchaean seawater sulphate concentrations from sulphur isotopes in massive sulphide ore. Nat. Geosci. 6, 61–64 (2013).

    Article  Google Scholar 

  47. Ague, J. J. et al. Slab-derived devolatilization fluids oxidized by subducted metasedimentary rocks. Nat. Geosci. 15, 320–326 (2022).

    Article  Google Scholar 

  48. Iacovino, K., Guild, M. R. & Till, C. B. Aqueous fluids are effective oxidizing agents of the mantle in subduction zones. Contrib. Mineral. Petrol. 175, 36 (2020).

    Article  Google Scholar 

  49. Brandon, A. D. & Draper, D. S. Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington, USA. Geochim. Cosmochim. Acta 60, 1739–1749 (1996).

    Article  Google Scholar 

  50. Tollan, P. & Hermann, J. Arc magmas oxidized by water dissociation and hydrogen incorporation in orthopyroxene. Nat. Geosci. 12, 667–671 (2019).

    Article  Google Scholar 

  51. Frost, B. R. & Ballhaus, C. Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington, USA: comment. Geochim. Cosmochim. Acta 62, 329–331 (1998).

    Google Scholar 

  52. Palin, R. M. & White, R. W. Emergence of blueschists on Earth linked to secular changes in oceanic crust composition. Nat. Geosci. 9, 60–64 (2016).

    Article  Google Scholar 

  53. Holland, H. D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

    Article  Google Scholar 

  54. Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007).

    Article  Google Scholar 

  55. Ishihara, S., Ohmoto, H., Anhaeusser, C. R., Imai, A. & Robb, L. J. Discovery of the oldest oxic granitoids in the Kaapvaal Craton and its implications for the redox evolution of early Earth. Geol. Soc. Am. Mem. 198, 67–80 (2006).

    Google Scholar 

  56. Moyen, J. F. Archean granitoids: classification, petrology, geochemistry and origin. Geol. Soc. London Spec. Publ. 489, SP489-2018–SP489-22034 (2019).

    Google Scholar 

  57. Hattori, K. & Cameron, E. M. Archaean magmatic sulphate. Nature 319, 45–47 (1986).

    Article  Google Scholar 

  58. Halevy, I., Johnston, D. T. & Schrag, D. P. Explaining the structure of the archean mass-independent sulfur isotope record. Science 329, 204–207 (2010).

    Article  Google Scholar 

  59. Meixnerová, J. et al. Mercury abundance and isotopic composition indicate subaerial volcanism prior to the end-Archean ‘whiff’ of oxygen. Proc. Natl Acad. Sci. USA 118, e2107511118 (2021).

    Article  Google Scholar 

  60. Olson, S. L. et al. Volcanically modulated pyrite burial and ocean–atmosphere oxidation. Earth Planet. Sci. Lett. 506, 417–427 (2019).

    Article  Google Scholar 

  61. Frieman, B. M., Kuiper, Y. D., Kelly, N. M., Monecke, T. & Kylander-Clark, A. Constraints on the geodynamic evolution of the southern Superior Province: U–Pb LA-ICP-MS analysis of detrital zircon in successor basins of the Archean Abitibi and Pontiac subprovinces of Ontario and Quebec, Canada. Precambrian Res. 292, 398–416 (2017).

    Article  Google Scholar 

  62. Loucks, R. R., Fiorentini, M. L. & Henríquez, G. J. New magmatic oxybarometer using trace elements in zircon. J. Petrol. 61, egaa034 (2020).

    Article  Google Scholar 

  63. Valley, J. W., Kinny, P. D., Schulze, D. J. & Spicuzza, M. J. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib. Mineral. Petrol. 133, 1–11 (1998).

    Article  Google Scholar 

  64. Smithies, R. H. et al. Oxygen isotopes trace the origins of Earth’s earliest continental crust. Nature 592, 70–75 (2021).

    Article  Google Scholar 

  65. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  Google Scholar 

  66. Wojdyr, M. Fityk: a general‐purpose peak fitting program. J. Appl. Crystallogr. 43, 1126–1128 (2010).

    Article  Google Scholar 

  67. Profeta, L. et al. Quantifying crustal thickness over time in magmatic arcs. Sci. Rep. 5, 17786 (2015).

    Article  Google Scholar 

  68. Sun, S. S. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  69. Sarbas, B. & Nohl, U. The GEOROC database as part of a growing geoinformatics network. Geoinformatics 2008—Data to Knowledge, Proceedings. 42–43 (Potsdam, 2008).

  70. Ayer, J. A., Trowell, N. F. & Josey, S. Geological Compilation of the Abitibi Greenstone Belt Miscellaneous Release—Data 143 (Ontario Geological Survey, 2004).

  71. Ayer, J. A. & Chartrand, J. E. Geological Compilation of the Abitibi Greenstone Belt Miscellaneous Release—Data 282 (Ontario Geological Survey, 2011).

  72. Bau, M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol. 93, 219–230 (1991).

    Article  Google Scholar 

  73. Hu, F. et al. Quantitatively tracking the elevation of the Tibetan Plateau since the Cretaceous: insights from whole-rock Sr/Y and La/Yb ratios. Geophys. Res. Lett. 47, e2020GL089202 (2020).

    Article  Google Scholar 

  74. Clarke, D. B. The mineralogy of peraluminous granites; a review. Can. Mineralogist 19, 3–17 (1981).

    Google Scholar 

  75. Tang, M., Ji, W. Q., Chu, X., Wu, A. & Chen, C. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology 49, 76–80 (2020).

    Article  Google Scholar 

  76. Richards, J. P. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: just add water. Econ. Geol. 106, 1075–1081 (2011).

    Article  Google Scholar 

  77. Matjuschkin, V., Blundy, J. D. & Brooker, R. A. The effect of pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits. Contrib. Mineral. Petrol. 171, 1–25 (2016).

    Article  Google Scholar 

  78. Nash, W. M., Smythe, D. J. & Wood, B. J. Compositional and temperature effects on sulfur speciation and solubility in silicate melts. Earth Planet. Sci. Lett. 507, 187–198 (2019).

    Article  Google Scholar 

  79. Piccoli, P. M. & Candela, P. A. Apatite in igneous systems. Rev. Mineral. Geochem. 48, 255–292 (2002).

    Article  Google Scholar 

  80. Montsion, R., Thurston, P. & Ayer, J. 1:2,000,000 Scale Geological Compilation of the Superior Craton Version 1 (Mineral Exploration Research Centre, Harquail School of Earth Sciences, Laurentian University, 2018).

Download references

Acknowledgements

The research was funded by Canada First Research Excellence Fund via a Metal Earth (CFREF-2015-00005) thematic project to J.P.R., the National Natural Science Foundation of China (grant number 41820104010, J.M.), the US National Science Foundation EAR (grant number 1924192, A.C.S.) and a China Scholarship Council Ph.D. scholarship (X.M.). We thank D. Crabtree at Ontario GeoLabs for assistance in electron microprobe analysis and A. Lanzirotti and M. Newville at Advanced Photon Sources in the United States for µ-XANES analysis. The research used synchrotron resources (Sector 13-ID-E) of Advanced Photon Source in Argonne National Laboratory under contract number DE-AC02-06CH11357. We thank the Geological Survey of Canada, Ontario Geological Survey, Jack Satterley Geochronology Laboratory (University of Toronto), Ministère de lʼÉnergie et des Ressources Naturelles and the Centre de recherche sur la dynamique du système Terre (GEOTOP; University of Quebec at Montreal) for provision of sample materials. This is a contribution of MERC-ME-2022-31 from Mineral Exploration Research Centre, Harquail School of Earth Sciences.

Author information

Authors and Affiliations

Authors

Contributions

X.M. conceived the project and wrote the first version of the manuscript. J.P.R. assisted X.M. in designing an initial project. X.M. identified and measured the composition of the zircon-hosted apatite inclusions and worked with A.C.S. and J.M.K. to complete the µ-XANES analysis. D.R.M. mounted the zircon grains that were previously used for the Hf–O isotopic mapping project of the southeastern Superior Province. All of the authors, including J.M., D.J.K. and P.J.J. contributed to interpreting the data and revising the manuscript.

Corresponding authors

Correspondence to Xuyang Meng, Adam C. Simon or Jingwen Mao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling editor: Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Simplified geological map of the southeastern Superior Province80 and the spatial distribution of the estimated crustal thickness.

a, Lithology; b, Crustal thickness at >2.685 Ga; c, Crustal thickness at <2.685 Ga. See crustal thickness estimation in the ‘Methods’ section.

Extended Data Fig. 2 Backscattered electron or cathodoluminescence images of zircons with apatite inclusions used for µ-XANES analyses that were separated from representative granitoid rocks from the southeastern Superior Province.

The samples have been grouped into (a) pre-tectonic, syn-volcanic TTG rocks; (b) syn-tectonic TTG rocks; (c) syn- to late-tectonic potassic rocks including (d) late-tectonic alkalic rocks. Insets are mainly BSE images for the analyzed apatite inclusions with a few CL images for the zircon hosts (a8 and b4). Note that the low S concentrations in apatite inclusions in a1 and a8 make the S-XANES spectra undetectable, whereas spectra for the apatite inclusions in c7 and c9 have been contaminated by the zircon hosts and were excluded. Abbreviations: Ap = apatite, Zrn = zircon. See sample information in Supplementary Table 1.

Extended Data Fig. 3 Box charts and histograms for the calculated apatite saturation temperatures estimated for TTG (in red; 898 ± 50 °C, 1σ, n = 1924), potassic (in light blue; 896 ± 69 °C, 1σ, n = 460), and sanukitoid (in blue; 920 ± 45 °C, 1σ, n = 38) rocks in the southeastern Superior Province.

The average values of Ti-in-zircon (764 ± 30 °C, 1σ, n = 50) and zircon saturation temperatures (741 ± 54 °C, 1σ, n = 50, n = 1822) for all of the available samples are calculated and plotted for comparison. The zircon saturation temperature and Ti-in-zircon temperature are calculated using methods of ref. 32 and ref. 33, respectively. Box-and-whisker plots in (a) indicate the median, first and third quartiles, and lower to upper whiskers (±1.5×interquartile range). IQR = interquartile range. The square dots and black diamonds represent mean values and outliers, respectively. The error bands for the zircon saturation and Ti-in-zircon temperatures in (b-d) represent standard deviations.

Extended Data Fig. 4 Normalized apatite µ-XANES spectra at S K-edge for representative intermediate-felsic rocks from the southeastern Superior Province (Canada).

a, pre-tectonic TTG (in pink). b, syn-tectonic TTG (in red). c, potassic rocks (in blue). The analysis numbers are consistent with the sample numbers in Extended Data Fig. 2. Peak positions for S2−, S4+, S6+ are at 2470 eV, 2477 eV, and 2482 eV, respectively, and are shown as dotted gray lines. The calculated S6+/ΣS ratios are shown on right of each spectra. See sample information in Supplementary Table 1.

Extended Data Fig. 5 Plot of the estimated crustal thickness versus zircon δ18O values.

The zircon O isotopic data for sodic and potassic rocks are from ref. 12,22. The mantle value for zircon O isotopes is from ref. 63. Error bars indicate 1σ uncertainties. N represents numbers of rock samples.

Extended Data Fig. 6 Box charts and histograms for the crustal thickness of southeastern Superior Province at >2.685 Ga and <2.685 Ga estimated based on compositions of TTG (in red; 48 ± 21 km, 1σ, n = 773) and potassic (including sanukitoid, in blue; to 65 ± 14 km, 1σ, n = 135) rocks, respectively.

Box-and-whisker plots in (a) indicate the median, first and third quartiles, and lower to upper whiskers (±1.5×interquartile range). IQR = interquartile range. The square dots and black diamonds represent mean values and outliers, respectively.

Supplementary information

Supplementary Table 1

Summary of the sample locations and information for this study.

Supplementary Table 2

Electron probe micro-analyses of zircon-hosted apatite grains for representative sodic and potassic rocks from the southeastern Superior Province.

Supplementary Table 3

The average magmatic values (relatively to FMQ redox buffer) estimated using a zircon Ce–Ti–Ui oxybarometer for representative Phanerozoic arc magmas.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Simon, A.C., Kleinsasser, J.M. et al. Formation of oxidized sulfur-rich magmas in Neoarchaean subduction zones. Nat. Geosci. 15, 1064–1070 (2022). https://doi.org/10.1038/s41561-022-01071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-01071-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing