Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Earth-like lithospheric thickness and heat flow on Venus consistent with active rifting

Abstract

Venus is Earth’s twin in size and radiogenic heat budget, yet it remains unclear how Venus loses its heat absent plate tectonics. Most Venusian stagnant-lid models predict a thick lithosphere with heat flow about half that of Earth’s mobile-lid regime. Here we estimate elastic lithospheric thickness at 75 locations on Venus using topographic flexure at 65 coronae—quasi-circular volcano-tectonic features—determined from Magellan altimetry data. We find an average thickness at coronae of 11 ± 7 km. This implies an average heat flow of 101 ± 88 mW m−2, higher than Earth’ s average but similar to terrestrial values in actively extending areas. For some locations, such as the Parga Chasma rift zone, we estimate heat flow exceeding 75 mW m−2. Combined with a low-resolution map of global elastic thickness, this suggests that coronae typically form on thin lithosphere, instead of locally thinning the lithosphere via plume heating, and that most regions of low elastic thickness are best explained by high heat flow rather than crustal compensation. Our analysis identifies likely areas of active extension and suggests that Venus has Earth-like lithospheric thickness and global heat flow ranges. Together with the planet’s geologic history, our findings support a squishy-lid convective regime that relies on plumes, intrusive magmatism and delamination to increase heat flow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hepat Corona exhibits double fracture annulae and a topographic rim that is well fit by an elastic flexure model.
Fig. 2: Local and regional heat flow values mostly agree and show concentrations of high heat flow in some areas.
Fig. 3: Heat flow estimates are mostly greater than stagnant-lid values and overlap with terrestrial values, including those for active regions.

Similar content being viewed by others

Data availability

All Magellan data are available in the Planetary Data System. The global topography is at https://planetarymaps.usgs.gov/mosaic/Venus_Magellan_Topography_Global_4641m_v02.tif. The global synthetic aperture radar map is at https://planetarymaps.usgs.gov/mosaic/Venus_Magellan_LeftLook_mosaic_global_75m.tif. Supplementary Tables 1–3 are available at https://doi.org/10.5281/zenodo.7114821. The global Venus elastic thickness map from ref. 30 is available at https://doi.org/10.5281/zenodo.7113940.

Code availability

ARCGIS and MATLAB are commercial codes. MATLAB analysis code is available from the authors on request.

References

  1. McKinnon, W. B., Zahnle, K. J., Ivanov, B. A. & Melosh, H. J. in Venus II (eds Bougher, S. W. et al.) 969–1014 (Univ. Arizona Press, 1997).

  2. Herrick, R. R. & Rumpf, M. E. Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters. J. Geophys. Res. Planets 116, E02004 (2011).

    Article  Google Scholar 

  3. Campbell, B. A. Surface formation rates and impact crater densities on Venus. J. Geophys. Res. Planets 104, 21951–21955 (1999).

    Article  Google Scholar 

  4. Strom, R. G., Schaber, G. G. & Dawson, D. D. The global resurfacing of Venus. J. Geophys. Res. Planets 99, 10899–10926 (1994).

    Article  Google Scholar 

  5. Phillips, R. J. & Izenberg, N. R. Ejecta correlations with spatial crater density and Venus resurfacing history. Geophys. Res. Lett. 22, 1517–1520 (1995).

    Article  Google Scholar 

  6. O’Rourke, J. G., Wolf, A. S. & Ehlmann, B. L. Venus: interpreting the spatial distribution of volcanically modified craters. Geophys. Res. Lett. 41, 8252–8260 (2014).

    Article  Google Scholar 

  7. Bjonnes, E., Hansen, V. L., James, B. & Swenson, J. B. Equilibrium resurfacing of Venus: results from new Monte Carlo modeling and implications for Venus surface histories. Icarus 217, 451–461 (2012).

    Article  Google Scholar 

  8. Smrekar, S. E. et al. Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328, 605–608 (2010).

    Article  Google Scholar 

  9. Brossier, J., Gilmore, M. & Toner, K. Low radar emissivity signatures on Venus volcanoes and coronae: new insights on relative composition and age. Icarus 343, 113693 (2020).

    Article  Google Scholar 

  10. Campbell, B. A. et al. Pyroclastic flow deposits on Venus as indicators of renewed magmatic activity. J. Geophys. Res. Planets 122, 1580–1596 (2017).

    Article  Google Scholar 

  11. Solomatov, V. & Moresi, L. N. Stagnant lid convection on Venus. J. Geophys. Res. Planets 101, 4737–4753 (1996).

    Article  Google Scholar 

  12. Weller, M. B. & Kiefer, W. S. The physics of changing tectonic regimes: implications for the temporal evolution of mantle convection and the thermal history of Venus. J. Geophys. Res. Planets 125, e2019JE005960 (2020).

    Article  Google Scholar 

  13. Gillmann, C. & Tackley, P. Atmosphere/mantle coupling and feedbacks on Venus. J. Geophys. Res. Planets 119, 1189–1217 (2014).

    Article  Google Scholar 

  14. Huang, J., Yang, A. & Zhong, S. Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics. Earth Planet. Sci. Lett. 362, 207–214 (2013).

    Article  Google Scholar 

  15. Noack, L., Breuer, D. & Spohn, T. Coupling the atmosphere with interior dynamics: implications for the resurfacing of Venus. Icarus 217, 484–498 (2012).

    Article  Google Scholar 

  16. Lenardic, A. The diversity of tectonic modes and thoughts about transitions between them. Phil. Trans. R. Soc. A 376, 20170416 (2018).

    Article  Google Scholar 

  17. Lourenço, D. L., Rozel, A. B., Ballmer, M. D. & Tackley, P. J. Plutonic–squishy lid: a new global tectonic regime generated by intrusive magmatism on Earth-like planets. Geochem. Geophys. Geosyst. 21, e2019GC008756 (2020).

    Article  Google Scholar 

  18. Glaze, L., Stofan, E., Smrekar, S. & Baloga, S. Insights into corona formation through statistical analyses. J. Geophys. Res. Planets 107, 18-11–18-12 (2002).

    Article  Google Scholar 

  19. Stofan, E. R., Bindschadler, D. L., Head, J. W. & Parmentier, E. M. Corona structures on Venus: models of origin. J. Geophys. Res. Planets 96, 20933–20946 (1991).

    Article  Google Scholar 

  20. Koch, D. M. & Manga, M. Neutrally buoyant diapirs: a model for Venus coronae. Geophys. Res. Lett. 23, 225–228 (1996).

    Article  Google Scholar 

  21. Tackley, P. & Stevenson, D. The production of small Venusian coronae by Rayleigh–Taylor instabilities in the uppermost mantle. Eos 72, 287 (1991).

    Google Scholar 

  22. Grindrod, P. M. & Hoogenboom, T. Venus: the corona conundrum. Astron. Geophys. 47, 3.16–3.21 (2006).

    Article  Google Scholar 

  23. Hoogenboom, T. & Houseman, G. A. Rayleigh–Taylor instability as a mechanism for corona formation on Venus. Icarus 180, 292–307 (2006).

    Article  Google Scholar 

  24. Smrekar, S. E. & Stofan, E. R. Origin of corona-dominated topographic rises on Venus. Icarus 139, 100–115 (1999).

    Article  Google Scholar 

  25. Gülcher, A. J., Gerya, T. V., Montési, L. G. & Munch, J. Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus. Nat. Geosci. 13, 547–554 (2020).

    Article  Google Scholar 

  26. Davaille, A., Smrekar, S. & Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017).

    Article  Google Scholar 

  27. Dombard, A. J., Johnson, C. L., Richards, M. A. & Solomon, S. C. A magmatic loading model for coronae on Venus. J. Geophys. Res. Planets 112, E04006 (2007).

    Article  Google Scholar 

  28. McGovern, P. J., Rumpf, M. E. & Zimbelman, J. R. The influence of lithospheric flexure on magma ascent at large volcanoes on Venus. J. Geophys. Res. Planets 118, 2423–2437 (2013).

    Article  Google Scholar 

  29. Lang, N. P. & López, I. The magmatic evolution of three Venusian coronae. Geol. Soc. Spec. Publ. 401, 77–95 (2015).

    Article  Google Scholar 

  30. Anderson, F. S. & Smrekar, S. E. Global mapping of crustal and lithospheric thickness on Venus. J. Geophys. Res. Planets 111, E08006 (2006).

    Article  Google Scholar 

  31. Schubert, G. & Sandwell, D. A global survey of possible subduction sites on Venus. Icarus 117, 173–196 (1995).

    Article  Google Scholar 

  32. O’Rourke, J. G. & Smrekar, S. E. Signatures of lithospheric flexure and elevated heat flow in stereo topography at coronae on Venus. J. Geophys. Res. Planets 123, 369–389 (2018).

    Article  Google Scholar 

  33. Johnson, C. L. & Sandwell, D. T. Lithospheric flexure on Venus. Geophys. J. Int. 119, 627–647 (1994).

    Article  Google Scholar 

  34. Sandwell, D. T. & Schubert, G. Flexural ridges, trenches, and outer rises around coronae on Venus. J. Geophys. Res. Planets 97, 16069–16083 (1992).

    Article  Google Scholar 

  35. Borrelli, M. E., O’Rourke, J. G., Smrekar, S. E. & Ostberg, C. M. A global survey of lithospheric flexure at steep‐sided domical volcanoes on Venus reveals intermediate elastic thicknesses. J. Geophys. Res. Planets 126, e2020JE006756 (2021).

    Article  Google Scholar 

  36. Russell, M. & Johnson, C. Evidence for a locally thinned lithosphere associated with recent volcanism at Aramaiti Corona, Venus. J. Geophys. Res. Planets 126, e2020JE006783 (2021).

    Article  Google Scholar 

  37. Raitala, J., Kauhanen, K., Black, M. & Tokkonen, T. Crustal bending at Salme Dorsa on Venus. Planet. Space Sci. 43, 1001–1012 (1995).

    Article  Google Scholar 

  38. Bjonnes, E., Johnson, B. & Evans, A. Estimating Venusian thermal conditions using multiring basin morphology. Nat. Astron. 5, 498–502 (2021).

    Article  Google Scholar 

  39. James, P. B., Zuber, M. T. & Phillips, R. J. Crustal thickness and support of topography on Venus. J. Geophys. Res. Planets 118, 859–875 (2013).

    Article  Google Scholar 

  40. McGovern, P. J. et al. Localized gravity/topography admittance and correlation spectra on Mars: implications for regional and global evolution. J. Geophys. Res. Planets 107, 19-11–19-25 (2002).

    Article  Google Scholar 

  41. Mueller, S. & Phillips, R. J. On the reliability of lithospheric constraints derived from models of outer-rise flexure. Geophys. J. Int. 123, 887–902 (1995).

    Article  Google Scholar 

  42. Albert, R. A. & Phillips, R. J. Paleoflexure. Geophys. Res. Lett. 27, 2385–2388 (2000).

    Article  Google Scholar 

  43. Watts, A. & Zhong, S. Observations of flexure and the rheology of oceanic lithosphere. Geophys. J. Int. 142, 855–875 (2000).

    Article  Google Scholar 

  44. Molnar, P. The brittle–plastic transition, earthquakes, temperatures, and strain rates. J. Geophys. Res. Solid Earth 125, e2019JB019335 (2020).

    Article  Google Scholar 

  45. Sandwell, D. & Schubert, G. Geoid height versus age for symmetric spreading ridges. J. Geophys. Res. Solid Earth 85, 7235–7241 (1980).

    Article  Google Scholar 

  46. Bilotti, F. & Suppe, J. The global distribution of wrinkle ridges on Venus. Icarus 139, 137–157 (1999).

    Article  Google Scholar 

  47. Sandwell, D. T., Johnson, C. L., Bilotti, F. & Suppe, J. Driving forces for limited tectonics on Venus. Icarus 129, 232–244 (1997).

    Article  Google Scholar 

  48. Stein, C. A. & Stein, S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123–129 (1992).

    Article  Google Scholar 

  49. Morgan, P. in Developments in Geotectonics Vol. 19 (eds Morgan, P. and Baker, B. H.) 277–298 (Elsevier, 1983).

  50. Smrekar, S. E. & Stofan, E. R. Corona formation and heat loss on Venus by coupled upwelling and delamination. Science 277, 1289–1294 (1997).

    Article  Google Scholar 

  51. Piskorz, D., Elkins‐Tanton, L. T. & Smrekar, S. E. Coronae formation on Venus via extension and lithospheric instability. J. Geophys. Res. Planets 119, 2568–2582 (2014).

    Article  Google Scholar 

  52. Jaupart, C., Labrosse, S. & Mareschal, J. C. in Treatise on Geophysics (ed. Schubert, G.) 253–303 (Elsevier, 2007).

  53. Moore, W. B., Simon, J. I. & Webb, A. A. G. Heat-pipe planets. Earth Planet. Sci. Lett. 474, 13–19 (2017).

    Article  Google Scholar 

  54. Foley, B. J. & Driscoll, P. E. Whole planet coupling between climate, mantle, and core: implications for rocky planet evolution. Geochem. Geophys. Geosyst. 17, 1885–1914 (2016).

    Article  Google Scholar 

  55. Schools, J. & Smrekar, S. The role of melt permeability in linked magmatic–tectonic corona formation models. In Proc. 52nd Lunar and Planetary Science Conference 1257 (2021).

  56. Garvin, J. B. et al. Revealing the mysteries of Venus: the DAVINCI mission. Planet. Sci. J. 3, 117 (2022).

    Article  Google Scholar 

  57. Ghail, R. EnVision: Understanding Why Earth’s Closest Neighbour Is So Different (European Space Agency, 2021).

  58. Smrekar, S. et al. VERITAS (Venus emissivity, radio science, InSAR, topography, and spectroscopy): a discovery mission. In Proc. 2022 IEEE Aerospace Conference (AERO) 1–20 (IEEE, 2022).

  59. Ford, P. G. & Pettengill, G. H. Venus topography and kilometer‐scale slopes. J. Geophys. Res. Planets 97, 13103–13114 (1992).

    Article  Google Scholar 

  60. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  Google Scholar 

  61. McNutt, M. K. Lithospheric flexure and thermal anomalies. J. Geophys. Res. Solid Earth 89, 11180–11194 (1984).

    Article  Google Scholar 

  62. Ranalli, G. Rheology of the Earth (Springer, 1995).

  63. Goetze, C. & Evans, B. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. Int. 59, 463–478 (1979).

    Article  Google Scholar 

  64. Solomon, S. C. & Head, J. W. Lithospheric flexure beneath the Freyja Montes foredeep, Venus: constraints on lithospheric thermal gradient and heat flow. Geophys. Res. Lett. 17, 1393–1396 (1990).

    Article  Google Scholar 

  65. Mackwell, S., Zimmerman, M. & Kohlstedt, D. High‐temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res. Solid Earth 103, 975–984 (1998).

    Article  Google Scholar 

  66. Bellas, A., Zhong, S. & Watts, A. Constraints on the rheology of the lithosphere from flexure of the Pacific Plate at the Hawaiian Islands. Geochem. Geophys. Geosyst. 21, e2019GC008819 (2020).

    Article  Google Scholar 

  67. Konopliv, A., Banerdt, W. & Sjogren, W. Venus gravity: 180th degree and order model. Icarus 139, 3–18 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

S.E.S. thanks past undergraduate students who contributed to the early stages of this work: V. Auerbach, C. Miao and E. Tucker. We thank F. Bilotte for providing his rift map. A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. This work was supported by NASA’s Solar System Workings programme (grant #811073.02.35.04.55), which funded S.E.S., J.G.O. and C.O.

Author information

Authors and Affiliations

Authors

Contributions

S.E.S., J.G.O. and C.O. conceptualized the project. J.G.O., C.O. and S.E.S. devised the methodology. C.O., S.E.S. and J.G.O. carried out the investigation. Visualization was done by C.O., S.E.S. and J.G.O. Funding acquisition was handled by S.E.S. S.E.S. was in charge of project administration and supervision. The original draft was written by S.E.S., C.O. and J.G.O. It was reviewed and edited by S.E.S., C.O. and J.G.O.

Corresponding author

Correspondence to Suzanne E. Smrekar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Shijie Zhong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Conversion of elastic to mechanical thickness reallocates stress from an idealized elastic plate to include elastic and viscous support.

(a) In the elastic plate model, the stress difference within the plate (purple curve) varies linearly with depth. This example uses Te = 10 km, strain rate = 10 − 16 s − 1, and k = 50 × 10 − 8 m − 1. (b) In a real plate, the maximum stress difference is limited by brittle failure and ductile flow at the top and bottom, respectively. We calculate the Tm required to produce the same total moment (purple shading) in both models. In this example Tm is ~50% > Te. We assume that the bottom of the plate has the temperature required for ductile flow at stress differences ≤50 MPa (that is, ~1013 K for dry olivine). We show how the mechanical thickness (c) and surface heat flow (d) vary as functions of elastic thickness and plate curvature. At a higher strain rate, the ductile lithosphere supports stress to a greater temperature, on the order of roughly 50 K per order of magnitude increase in strain rate. As the strain rate increases, the predicted thermal gradient and surface heat flow thus both increase.

Extended Data Fig. 2 Varying parameters in the ductile flow law affect the conversion from elastic thickness to mechanical thickness and heat flow.

We use our nominal rheological parameters for dry olivine and calculated Tm and Fs for Te = 10 km and κ = 50 × 10−8 m−1. In each panel, the dashed, magenta lines show the nominal values of each parameter. We separately vary our assumed values of Young’s modulus (a, b), the temperature at the base of the lithosphere (c, d), the cutoff strength (that is, the maximum deviatoric stress at the base of the lithosphere) (e, f), and the strain rate (g, h). For the first three rows (af), we adjust \({\dot{\epsilon}}\)/A to hold the other two parameters constant. For the bottom row (g-h), we hold A constant and recalculate the basal temperature associated with Δσ = 50 MPa. We note that holding some parameters constant while changing others may not be fully realistic.

Extended Data Fig. 3 Te from local flexure is compared to the Te map from admittance within a circle representing the local gravity resolution.

The numerical values in white are Te from flexure and are overlayed on top of the map of Te values from Anderson & Smrekar30. The local Te value at Habonde Corona (a) was in ‘good’ agreement with regional Te values; Seia Corona (b) has ‘reasonable’ agreement, Corona c208 (c) exhibits no agreement, and Bhumidevi Corona (d) includes a region where no regional Te could be obtained due to a large number of pixels with no reported Te values.

Supplementary information

Supplementary Table 1

Derived parameters for coronae in this study and ref. 32. Te (elastic thickness), Source (method in this study, MCMC or LM, or from O&S (O’Rourke and Smrekar 32), Lat (latitude), Lon (longitude), Diameter, Upper Te (maximum value within error), Lower Te (minimum values within error), Tm (mechanical thickness), Kappa (curvature), dT/dz (thermal gradient), Fs (heat flow), Wo (vertical offset), Sr (regional slope), GTR in this area39, Agree (with Te from ref. 30) where 0 is unconstrained, 1 is none, 2 is reasonable and 3 is good (see main text), Topo (class as defined in ref. 50). Additional LM results are given in Supplementary Table 2.

Supplementary Table 2

Location and Te values for coronae from previous studies, plus additional Te values derived using LM method from this study.

Supplementary Table 3

Derived parameters for rifts from this study. Parameters as defined in Supplementary Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smrekar, S.E., Ostberg, C. & O’Rourke, J.G. Earth-like lithospheric thickness and heat flow on Venus consistent with active rifting. Nat. Geosci. 16, 13–18 (2023). https://doi.org/10.1038/s41561-022-01068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-01068-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing