Abstract
Venus is Earth’s twin in size and radiogenic heat budget, yet it remains unclear how Venus loses its heat absent plate tectonics. Most Venusian stagnant-lid models predict a thick lithosphere with heat flow about half that of Earth’s mobile-lid regime. Here we estimate elastic lithospheric thickness at 75 locations on Venus using topographic flexure at 65 coronae—quasi-circular volcano-tectonic features—determined from Magellan altimetry data. We find an average thickness at coronae of 11 ± 7 km. This implies an average heat flow of 101 ± 88 mW m−2, higher than Earth’ s average but similar to terrestrial values in actively extending areas. For some locations, such as the Parga Chasma rift zone, we estimate heat flow exceeding 75 mW m−2. Combined with a low-resolution map of global elastic thickness, this suggests that coronae typically form on thin lithosphere, instead of locally thinning the lithosphere via plume heating, and that most regions of low elastic thickness are best explained by high heat flow rather than crustal compensation. Our analysis identifies likely areas of active extension and suggests that Venus has Earth-like lithospheric thickness and global heat flow ranges. Together with the planet’s geologic history, our findings support a squishy-lid convective regime that relies on plumes, intrusive magmatism and delamination to increase heat flow.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Venus Evolution Through Time: Key Science Questions, Selected Mission Concepts and Future Investigations
Space Science Reviews Open Access 03 October 2023
-
Dyke swarms record the plume stage evolution of the Atla Regio superplume on Venus
Communications Earth & Environment Open Access 03 July 2023
-
Venus, the Planet: Introduction to the Evolution of Earth’s Sister Planet
Space Science Reviews Open Access 06 February 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
All Magellan data are available in the Planetary Data System. The global topography is at https://planetarymaps.usgs.gov/mosaic/Venus_Magellan_Topography_Global_4641m_v02.tif. The global synthetic aperture radar map is at https://planetarymaps.usgs.gov/mosaic/Venus_Magellan_LeftLook_mosaic_global_75m.tif. Supplementary Tables 1–3 are available at https://doi.org/10.5281/zenodo.7114821. The global Venus elastic thickness map from ref. 30 is available at https://doi.org/10.5281/zenodo.7113940.
Code availability
ARCGIS and MATLAB are commercial codes. MATLAB analysis code is available from the authors on request.
References
McKinnon, W. B., Zahnle, K. J., Ivanov, B. A. & Melosh, H. J. in Venus II (eds Bougher, S. W. et al.) 969–1014 (Univ. Arizona Press, 1997).
Herrick, R. R. & Rumpf, M. E. Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters. J. Geophys. Res. Planets 116, E02004 (2011).
Campbell, B. A. Surface formation rates and impact crater densities on Venus. J. Geophys. Res. Planets 104, 21951–21955 (1999).
Strom, R. G., Schaber, G. G. & Dawson, D. D. The global resurfacing of Venus. J. Geophys. Res. Planets 99, 10899–10926 (1994).
Phillips, R. J. & Izenberg, N. R. Ejecta correlations with spatial crater density and Venus resurfacing history. Geophys. Res. Lett. 22, 1517–1520 (1995).
O’Rourke, J. G., Wolf, A. S. & Ehlmann, B. L. Venus: interpreting the spatial distribution of volcanically modified craters. Geophys. Res. Lett. 41, 8252–8260 (2014).
Bjonnes, E., Hansen, V. L., James, B. & Swenson, J. B. Equilibrium resurfacing of Venus: results from new Monte Carlo modeling and implications for Venus surface histories. Icarus 217, 451–461 (2012).
Smrekar, S. E. et al. Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328, 605–608 (2010).
Brossier, J., Gilmore, M. & Toner, K. Low radar emissivity signatures on Venus volcanoes and coronae: new insights on relative composition and age. Icarus 343, 113693 (2020).
Campbell, B. A. et al. Pyroclastic flow deposits on Venus as indicators of renewed magmatic activity. J. Geophys. Res. Planets 122, 1580–1596 (2017).
Solomatov, V. & Moresi, L. N. Stagnant lid convection on Venus. J. Geophys. Res. Planets 101, 4737–4753 (1996).
Weller, M. B. & Kiefer, W. S. The physics of changing tectonic regimes: implications for the temporal evolution of mantle convection and the thermal history of Venus. J. Geophys. Res. Planets 125, e2019JE005960 (2020).
Gillmann, C. & Tackley, P. Atmosphere/mantle coupling and feedbacks on Venus. J. Geophys. Res. Planets 119, 1189–1217 (2014).
Huang, J., Yang, A. & Zhong, S. Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics. Earth Planet. Sci. Lett. 362, 207–214 (2013).
Noack, L., Breuer, D. & Spohn, T. Coupling the atmosphere with interior dynamics: implications for the resurfacing of Venus. Icarus 217, 484–498 (2012).
Lenardic, A. The diversity of tectonic modes and thoughts about transitions between them. Phil. Trans. R. Soc. A 376, 20170416 (2018).
Lourenço, D. L., Rozel, A. B., Ballmer, M. D. & Tackley, P. J. Plutonic–squishy lid: a new global tectonic regime generated by intrusive magmatism on Earth-like planets. Geochem. Geophys. Geosyst. 21, e2019GC008756 (2020).
Glaze, L., Stofan, E., Smrekar, S. & Baloga, S. Insights into corona formation through statistical analyses. J. Geophys. Res. Planets 107, 18-11–18-12 (2002).
Stofan, E. R., Bindschadler, D. L., Head, J. W. & Parmentier, E. M. Corona structures on Venus: models of origin. J. Geophys. Res. Planets 96, 20933–20946 (1991).
Koch, D. M. & Manga, M. Neutrally buoyant diapirs: a model for Venus coronae. Geophys. Res. Lett. 23, 225–228 (1996).
Tackley, P. & Stevenson, D. The production of small Venusian coronae by Rayleigh–Taylor instabilities in the uppermost mantle. Eos 72, 287 (1991).
Grindrod, P. M. & Hoogenboom, T. Venus: the corona conundrum. Astron. Geophys. 47, 3.16–3.21 (2006).
Hoogenboom, T. & Houseman, G. A. Rayleigh–Taylor instability as a mechanism for corona formation on Venus. Icarus 180, 292–307 (2006).
Smrekar, S. E. & Stofan, E. R. Origin of corona-dominated topographic rises on Venus. Icarus 139, 100–115 (1999).
Gülcher, A. J., Gerya, T. V., Montési, L. G. & Munch, J. Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus. Nat. Geosci. 13, 547–554 (2020).
Davaille, A., Smrekar, S. & Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017).
Dombard, A. J., Johnson, C. L., Richards, M. A. & Solomon, S. C. A magmatic loading model for coronae on Venus. J. Geophys. Res. Planets 112, E04006 (2007).
McGovern, P. J., Rumpf, M. E. & Zimbelman, J. R. The influence of lithospheric flexure on magma ascent at large volcanoes on Venus. J. Geophys. Res. Planets 118, 2423–2437 (2013).
Lang, N. P. & López, I. The magmatic evolution of three Venusian coronae. Geol. Soc. Spec. Publ. 401, 77–95 (2015).
Anderson, F. S. & Smrekar, S. E. Global mapping of crustal and lithospheric thickness on Venus. J. Geophys. Res. Planets 111, E08006 (2006).
Schubert, G. & Sandwell, D. A global survey of possible subduction sites on Venus. Icarus 117, 173–196 (1995).
O’Rourke, J. G. & Smrekar, S. E. Signatures of lithospheric flexure and elevated heat flow in stereo topography at coronae on Venus. J. Geophys. Res. Planets 123, 369–389 (2018).
Johnson, C. L. & Sandwell, D. T. Lithospheric flexure on Venus. Geophys. J. Int. 119, 627–647 (1994).
Sandwell, D. T. & Schubert, G. Flexural ridges, trenches, and outer rises around coronae on Venus. J. Geophys. Res. Planets 97, 16069–16083 (1992).
Borrelli, M. E., O’Rourke, J. G., Smrekar, S. E. & Ostberg, C. M. A global survey of lithospheric flexure at steep‐sided domical volcanoes on Venus reveals intermediate elastic thicknesses. J. Geophys. Res. Planets 126, e2020JE006756 (2021).
Russell, M. & Johnson, C. Evidence for a locally thinned lithosphere associated with recent volcanism at Aramaiti Corona, Venus. J. Geophys. Res. Planets 126, e2020JE006783 (2021).
Raitala, J., Kauhanen, K., Black, M. & Tokkonen, T. Crustal bending at Salme Dorsa on Venus. Planet. Space Sci. 43, 1001–1012 (1995).
Bjonnes, E., Johnson, B. & Evans, A. Estimating Venusian thermal conditions using multiring basin morphology. Nat. Astron. 5, 498–502 (2021).
James, P. B., Zuber, M. T. & Phillips, R. J. Crustal thickness and support of topography on Venus. J. Geophys. Res. Planets 118, 859–875 (2013).
McGovern, P. J. et al. Localized gravity/topography admittance and correlation spectra on Mars: implications for regional and global evolution. J. Geophys. Res. Planets 107, 19-11–19-25 (2002).
Mueller, S. & Phillips, R. J. On the reliability of lithospheric constraints derived from models of outer-rise flexure. Geophys. J. Int. 123, 887–902 (1995).
Albert, R. A. & Phillips, R. J. Paleoflexure. Geophys. Res. Lett. 27, 2385–2388 (2000).
Watts, A. & Zhong, S. Observations of flexure and the rheology of oceanic lithosphere. Geophys. J. Int. 142, 855–875 (2000).
Molnar, P. The brittle–plastic transition, earthquakes, temperatures, and strain rates. J. Geophys. Res. Solid Earth 125, e2019JB019335 (2020).
Sandwell, D. & Schubert, G. Geoid height versus age for symmetric spreading ridges. J. Geophys. Res. Solid Earth 85, 7235–7241 (1980).
Bilotti, F. & Suppe, J. The global distribution of wrinkle ridges on Venus. Icarus 139, 137–157 (1999).
Sandwell, D. T., Johnson, C. L., Bilotti, F. & Suppe, J. Driving forces for limited tectonics on Venus. Icarus 129, 232–244 (1997).
Stein, C. A. & Stein, S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123–129 (1992).
Morgan, P. in Developments in Geotectonics Vol. 19 (eds Morgan, P. and Baker, B. H.) 277–298 (Elsevier, 1983).
Smrekar, S. E. & Stofan, E. R. Corona formation and heat loss on Venus by coupled upwelling and delamination. Science 277, 1289–1294 (1997).
Piskorz, D., Elkins‐Tanton, L. T. & Smrekar, S. E. Coronae formation on Venus via extension and lithospheric instability. J. Geophys. Res. Planets 119, 2568–2582 (2014).
Jaupart, C., Labrosse, S. & Mareschal, J. C. in Treatise on Geophysics (ed. Schubert, G.) 253–303 (Elsevier, 2007).
Moore, W. B., Simon, J. I. & Webb, A. A. G. Heat-pipe planets. Earth Planet. Sci. Lett. 474, 13–19 (2017).
Foley, B. J. & Driscoll, P. E. Whole planet coupling between climate, mantle, and core: implications for rocky planet evolution. Geochem. Geophys. Geosyst. 17, 1885–1914 (2016).
Schools, J. & Smrekar, S. The role of melt permeability in linked magmatic–tectonic corona formation models. In Proc. 52nd Lunar and Planetary Science Conference 1257 (2021).
Garvin, J. B. et al. Revealing the mysteries of Venus: the DAVINCI mission. Planet. Sci. J. 3, 117 (2022).
Ghail, R. EnVision: Understanding Why Earth’s Closest Neighbour Is So Different (European Space Agency, 2021).
Smrekar, S. et al. VERITAS (Venus emissivity, radio science, InSAR, topography, and spectroscopy): a discovery mission. In Proc. 2022 IEEE Aerospace Conference (AERO) 1–20 (IEEE, 2022).
Ford, P. G. & Pettengill, G. H. Venus topography and kilometer‐scale slopes. J. Geophys. Res. Planets 97, 13103–13114 (1992).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
McNutt, M. K. Lithospheric flexure and thermal anomalies. J. Geophys. Res. Solid Earth 89, 11180–11194 (1984).
Ranalli, G. Rheology of the Earth (Springer, 1995).
Goetze, C. & Evans, B. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. Int. 59, 463–478 (1979).
Solomon, S. C. & Head, J. W. Lithospheric flexure beneath the Freyja Montes foredeep, Venus: constraints on lithospheric thermal gradient and heat flow. Geophys. Res. Lett. 17, 1393–1396 (1990).
Mackwell, S., Zimmerman, M. & Kohlstedt, D. High‐temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res. Solid Earth 103, 975–984 (1998).
Bellas, A., Zhong, S. & Watts, A. Constraints on the rheology of the lithosphere from flexure of the Pacific Plate at the Hawaiian Islands. Geochem. Geophys. Geosyst. 21, e2019GC008819 (2020).
Konopliv, A., Banerdt, W. & Sjogren, W. Venus gravity: 180th degree and order model. Icarus 139, 3–18 (1999).
Acknowledgements
S.E.S. thanks past undergraduate students who contributed to the early stages of this work: V. Auerbach, C. Miao and E. Tucker. We thank F. Bilotte for providing his rift map. A portion of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. This work was supported by NASA’s Solar System Workings programme (grant #811073.02.35.04.55), which funded S.E.S., J.G.O. and C.O.
Author information
Authors and Affiliations
Contributions
S.E.S., J.G.O. and C.O. conceptualized the project. J.G.O., C.O. and S.E.S. devised the methodology. C.O., S.E.S. and J.G.O. carried out the investigation. Visualization was done by C.O., S.E.S. and J.G.O. Funding acquisition was handled by S.E.S. S.E.S. was in charge of project administration and supervision. The original draft was written by S.E.S., C.O. and J.G.O. It was reviewed and edited by S.E.S., C.O. and J.G.O.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks Shijie Zhong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Conversion of elastic to mechanical thickness reallocates stress from an idealized elastic plate to include elastic and viscous support.
(a) In the elastic plate model, the stress difference within the plate (purple curve) varies linearly with depth. This example uses Te = 10 km, strain rate = 10 − 16 s − 1, and k = 50 × 10 − 8 m − 1. (b) In a real plate, the maximum stress difference is limited by brittle failure and ductile flow at the top and bottom, respectively. We calculate the Tm required to produce the same total moment (purple shading) in both models. In this example Tm is ~50% > Te. We assume that the bottom of the plate has the temperature required for ductile flow at stress differences ≤50 MPa (that is, ~1013 K for dry olivine). We show how the mechanical thickness (c) and surface heat flow (d) vary as functions of elastic thickness and plate curvature. At a higher strain rate, the ductile lithosphere supports stress to a greater temperature, on the order of roughly 50 K per order of magnitude increase in strain rate. As the strain rate increases, the predicted thermal gradient and surface heat flow thus both increase.
Extended Data Fig. 2 Varying parameters in the ductile flow law affect the conversion from elastic thickness to mechanical thickness and heat flow.
We use our nominal rheological parameters for dry olivine and calculated Tm and Fs for Te = 10 km and κ = 50 × 10−8 m−1. In each panel, the dashed, magenta lines show the nominal values of each parameter. We separately vary our assumed values of Young’s modulus (a, b), the temperature at the base of the lithosphere (c, d), the cutoff strength (that is, the maximum deviatoric stress at the base of the lithosphere) (e, f), and the strain rate (g, h). For the first three rows (a–f), we adjust \({\dot{\epsilon}}\)/A to hold the other two parameters constant. For the bottom row (g-h), we hold A constant and recalculate the basal temperature associated with Δσ = 50 MPa. We note that holding some parameters constant while changing others may not be fully realistic.
Extended Data Fig. 3 Te from local flexure is compared to the Te map from admittance within a circle representing the local gravity resolution.
The numerical values in white are Te from flexure and are overlayed on top of the map of Te values from Anderson & Smrekar30. The local Te value at Habonde Corona (a) was in ‘good’ agreement with regional Te values; Seia Corona (b) has ‘reasonable’ agreement, Corona c208 (c) exhibits no agreement, and Bhumidevi Corona (d) includes a region where no regional Te could be obtained due to a large number of pixels with no reported Te values.
Supplementary information
Supplementary Table 1
Derived parameters for coronae in this study and ref. 32. Te (elastic thickness), Source (method in this study, MCMC or LM, or from O&S (O’Rourke and Smrekar 32), Lat (latitude), Lon (longitude), Diameter, Upper Te (maximum value within error), Lower Te (minimum values within error), Tm (mechanical thickness), Kappa (curvature), dT/dz (thermal gradient), Fs (heat flow), Wo (vertical offset), Sr (regional slope), GTR in this area39, Agree (with Te from ref. 30) where 0 is unconstrained, 1 is none, 2 is reasonable and 3 is good (see main text), Topo (class as defined in ref. 50). Additional LM results are given in Supplementary Table 2.
Supplementary Table 2
Location and Te values for coronae from previous studies, plus additional Te values derived using LM method from this study.
Supplementary Table 3
Derived parameters for rifts from this study. Parameters as defined in Supplementary Table 1.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Smrekar, S.E., Ostberg, C. & O’Rourke, J.G. Earth-like lithospheric thickness and heat flow on Venus consistent with active rifting. Nat. Geosci. 16, 13–18 (2023). https://doi.org/10.1038/s41561-022-01068-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-022-01068-0
This article is cited by
-
Estranged planetary twins
Nature Geoscience (2023)
-
Old impacts ignite young volcanism
Nature Astronomy (2023)
-
Dyke swarms record the plume stage evolution of the Atla Regio superplume on Venus
Communications Earth & Environment (2023)
-
Venus, the Planet: Introduction to the Evolution of Earth’s Sister Planet
Space Science Reviews (2023)
-
Venus Evolution Through Time: Key Science Questions, Selected Mission Concepts and Future Investigations
Space Science Reviews (2023)