Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Potential impacts of atmospheric microplastics and nanoplastics on cloud formation processes

Abstract

The presence of microplastics and nanoplastics (MnPs) in the atmosphere and their transport on a global scale has previously been demonstrated. However, little is known about their environmental impacts in the atmosphere. MnPs could act as cloud condensation nuclei (CCN) or ice-nucleating particles (INPs), affecting cloud formation processes. In sufficient quantities, they could change the cloud albedo, precipitation and lifetime, collectively impacting the Earth’s radiation balance and climate. In this Perspective, we evaluate the potential impact of MnPs on cloud formation by assessing their ability to act as CCN or INPs. Based on an analysis of their physicochemical properties, we propose that MnPs can act as INPs and potentially as CCN after environmental aging processes such as photochemical weathering and the sorption of macromolecules or trace soluble species onto the particle surface. The actual climate impact(s) of MnPs depend on their abundance relative to other aerosols. The concentration of MnPs in the atmosphere is currently low, so they are unlikely to make a substantial contribution to radiative forcing in regions exposed to other aerosols, either from natural sources or anthropogenic pollution. Nevertheless, MnPs will potentially cause non-negligible perturbations in unpolluted remote or marine clouds and generate local climate impacts, particularly in view of an increase in the release of MnPs to the environment in the future. Further measurements, coupled with better characterization of the physiochemical properties of MnPs, will enable a more accurate assessment of the climate impacts of MnPs acting as INPs and CCN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Possible pathways for MnPs cycling in the atmosphere.
Fig. 2: MnPs properties relevant for cloud droplet activation via CCN activation, and ice crystal formation via INPs by pore condensation and freezing or deposition nucleation and immersion freezing.
Fig. 3: Cloud-forming processes expected to be relevant for MnPs cloud formation.
Fig. 4: Anticipated impact of MnPs on cloud properties in the future as anthropogenic aerosols increase.

Similar content being viewed by others

References

  1. Mitrano, D. M. & Wagner, M. A sustainable future for plastics considering material safety and preserved value. Nat. Rev. Mater. 7, 71–73 (2022).

    Article  Google Scholar 

  2. Mitrano, D. M., Wick, P. & Nowack, B. Placing nanoplastics in the context of global plastic pollution. Nat. Nanotechnol. 16, 491–500 (2021).

    Article  Google Scholar 

  3. Allen, D. et al. Microplastics and nanoplastics in the marine-atmosphere environment. Nat. Rev. Earth Environ. 3, 393–405 (2022).

    Article  Google Scholar 

  4. Rochman, C. M. et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 38, 703–711 (2019).

    Article  Google Scholar 

  5. Gigault, J. et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507 (2021).

    Article  Google Scholar 

  6. Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019).

    Article  Google Scholar 

  7. Horton, A. A. & Dixon, S. J. Microplastics: an introduction to environmental transport processes. WIREs Water 5, e1268 (2018).

    Article  Google Scholar 

  8. Allen, S. et al. Micro(nano)plastics sources, fate, and effects: what we know after ten years of research. J. Hazard. Mater. Adv. 6, 100057 (2022).

    Article  Google Scholar 

  9. Koelmans, A. A., Besseling, E. & Shim, W. J. in Marine Anthropogenic Litter (eds Bergmann, M. et al.) 325–340 (Springer, 2015).

  10. Huang, D. et al. Recent advances on the transport of microplastics/nanoplastics in abiotic and biotic compartments. J. Hazard. Mater. 438, 129515 (2022).

    Article  Google Scholar 

  11. Dris, R. et al. Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 12, 592–599 (2015).

    Article  Google Scholar 

  12. Abbasi, S. et al. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ. Pollut. 244, 153–164 (2019).

    Article  Google Scholar 

  13. Dehghani, S., Moore, F. & Akhbarizadeh, R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ. Sci. Pollut. Res. 24, 20360–20371 (2017).

    Article  Google Scholar 

  14. Rezaei, M. et al. Wind erosion as a driver for transport of light density microplastics. Sci. Total Environ. 669, 273–281 (2019).

    Article  Google Scholar 

  15. Allen, S. et al. Examination of the ocean as a source for atmospheric microplastics. PLoS ONE 15, e0232746 (2020).

    Article  Google Scholar 

  16. Lehmann, M. et al. Ejection of marine microplastics by raindrops: a computational and experimental study. Microplastics Nanoplastics 1, 18 (2021).

    Article  Google Scholar 

  17. Brahney, J. et al. Constraining the atmospheric limb of the plastic cycle. Proc. Natl Acad. Sci. USA 118, e2020719118 (2021).

    Article  Google Scholar 

  18. Bianco, A. & Passananti, M.Atmospheric micro and nanoplastics: an enormous microscopic problem. Sustainability 12, 7327 (2020).

    Article  Google Scholar 

  19. Trainic, M. et al. Airborne microplastic particles detected in the remote marine atmosphere. Commun. Earth Environ. 1, 64 (2020).

    Article  Google Scholar 

  20. Zhang, Y. et al. Atmospheric microplastics: a review on current status and perspectives. Earth Sci. Rev. 203, 103118 (2020).

    Article  Google Scholar 

  21. Revell, L. E. et al. Direct radiative effects of airborne microplastics. Nature 598, 462–467 (2021).

    Article  Google Scholar 

  22. Ganguly, M. & Ariya, P. A. Ice nucleation of model nanoplastics and microplastics: a novel synthetic protocol and the influence of particle capping at diverse atmospheric environments. ACS Earth Space Chem. 3, 1729–1739 (2019).

    Article  Google Scholar 

  23. Evangeliou, N. et al. Sources and fate of atmospheric microplastics revealed from inverse and dispersion modelling: from global emissions to deposition. J. Hazard. Mater. 432, 128585 (2022).

    Article  Google Scholar 

  24. Evangeliou, N. et al. Atmospheric transport is a major pathway of microplastics to remote regions. Nat. Commun. 11, 3381 (2020).

    Article  Google Scholar 

  25. Lohmann, U., Lüönd, F. & Mahrt, F. An Introduction to Clouds: From the Microscale to Climate (Cambridge Univ. Press, 2016).

  26. Szopa, S. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. P. et al.) 817–922 (Cambridge Univ. Press, 2021).

  27. Li, Y. et al. Airborne fiber particles: types, size and concentration observed in Beijing. Sci. Total Environ. 705, 135967 (2020).

    Article  Google Scholar 

  28. Liao, Z. et al. Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China. J. Hazard. Mater. 417, 126007 (2021).

    Article  Google Scholar 

  29. Syafei, A. D. et al. Microplastic pollution in the ambient air of Surabaya, Indonesia. Curr. World Environ. 14, 290–298 (2019).

    Article  Google Scholar 

  30. Liu, K. et al. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci. Total Environ. 675, 462–471 (2019).

    Article  Google Scholar 

  31. Akhbarizadeh, R. et al. Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: their possible relationships and health implications. Environ. Res. 192, 110339 (2021).

    Article  Google Scholar 

  32. Wang, X. et al. Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source. J. Hazard. Mater. 389, 121846 (2020).

    Article  Google Scholar 

  33. Wang, X. et al. Efficient transport of atmospheric microplastics onto the continent via the East Asian summer monsoon. J. Hazard. Mater. 414, 125477 (2021).

    Article  Google Scholar 

  34. Liu, K. et al. Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environ. Sci. Technol. 53, 10612–10619 (2019).

    Article  Google Scholar 

  35. Klein, M. & Fischer, E. K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci. Total Environ. 685, 96–103 (2019).

    Article  Google Scholar 

  36. Wright, S. L. et al. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 136, 105411 (2020).

    Article  Google Scholar 

  37. Brahney, J. et al. Plastic rain in protected areas of the United States. Science 368, 1257 (2020).

    Article  Google Scholar 

  38. Allen, S. et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 12, 339–344 (2019).

    Article  Google Scholar 

  39. Szewc, K., Graca, B. & Dołęga, A. Atmospheric deposition of microplastics in the coastal zone: characteristics and relationship with meteorological factors. Sci. Total Environ. 761, 143272 (2021).

    Article  Google Scholar 

  40. Cai, L. et al. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environ. Sci. Pollut. Res. 24, 24928–24935 (2017).

    Article  Google Scholar 

  41. Materić, D. et al. Nanoplastics transport to the remote, high-altitude Alps. Environ. Pollut. 288, 117697 (2021).

    Article  Google Scholar 

  42. Allen, S. et al. Evidence of free tropospheric and long-range transport of microplastic at Pic du Midi Observatory. Nat. Commun. 12, 7242 (2021).

    Article  Google Scholar 

  43. Aves, A. R. et al. First evidence of microplastics in Antarctic snow. Cryosphere 16, 2127–2145 (2022).

  44. González-Pleiter, M. et al. Occurrence and transport of microplastics sampled within and above the planetary boundary layer. Sci. Total Environ. 761, 143213 (2021).

    Article  Google Scholar 

  45. Rogge, W. F. et al. Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environ. Sci. Technol. 27, 1892–1904 (1993).

    Article  Google Scholar 

  46. Cai, Y. et al. Formation of fiber fragments during abrasion of polyester textiles. Environ. Sci. Technol. 55, 8001–8009 (2021).

    Article  Google Scholar 

  47. Carr, S. A. Sources and dispersive modes of micro-fibers in the environment. Integr. Environ. Assess. Manag. 13, 466–469 (2017).

    Article  Google Scholar 

  48. O’Dowd, C. & de Leeuw, G. Marine aerosol production: a review of the current knowledge. Phil. Trans. Ser. A Math. Phys. Eng. Sci. 365, 1753–1774 (2007).

    Google Scholar 

  49. Boucher, O. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F.) 571–657 (Cambridge Univ. Press, 2013).

  50. Korolev, A. et al. Mixed-phase clouds: progress and challenges. Meteorol. Monogr. 58, 5.1–5.50 (2017).

    Article  Google Scholar 

  51. Kanji, Z. A. et al. Overview of ice nucleating particles. Meteorol. Monogr. 58, 1.1–1.33 (2017).

    Article  Google Scholar 

  52. Dusek, U., Reischl, G. P. & Hitzenberger, R. CCN activation of pure and coated carbon black particles. Environ. Sci. Technol. 40, 1223–1230 (2006).

    Article  Google Scholar 

  53. Extrand, C. W. Water contact angles and hysteresis of polyamide surfaces. J. Colloid Interface Sci. 248, 136–142 (2002).

    Article  Google Scholar 

  54. Song, J. et al. Development and characterization of thin polymer films relevant to fiber processing. Thin Solid Films 517, 4348–4354 (2009).

    Article  Google Scholar 

  55. Gotoh, K., Tagawa, Y. & Tabata, I. A quartz crystal microbalance simulation to examine the effect of ultraviolet light treatment on characteristics of polyethylene surface. J. Oleo Sci. 57, 495–501 (2008).

    Article  Google Scholar 

  56. Hüffer, T., Weniger, A.-K. & Hofmann, T. Sorption of organic compounds by aged polystyrene microplastic particles. Environ. Pollut. 236, 218–225 (2018).

    Article  Google Scholar 

  57. Liu, P. et al. Effect of weathering on environmental behavior of microplastics: properties, sorption and potential risks. Chemosphere 242, 125193 (2020).

    Article  Google Scholar 

  58. Levermore, J. M. et al. Detection of microplastics in ambient particulate matter using Raman spectral imaging and chemometric analysis. Anal. Chem. 92, 8732–8740 (2020).

    Article  Google Scholar 

  59. Wright, S. L., Levermore, J. M. & Kelly, F. J. Raman spectral imaging for the detection of inhalable microplastics in ambient particulate matter samples. Environ. Sci. Technol. 53, 8947–8956 (2019).

    Article  Google Scholar 

  60. Xie, Y. et al. Inhalable microplastics prevails in air: exploring the size detection limit. Environ. Int. 162, 107151 (2022).

    Article  Google Scholar 

  61. Sobhani, Z. et al. Identification and visualisation of microplastics/nanoplastics by Raman imaging (i): down to 100 nm. Water Res. 174, 115658 (2020).

    Article  Google Scholar 

  62. Sullivan, R. C. et al. Direct observations of the atmospheric processing of Asian mineral dust. Atmos. Chem. Phys. 7, 1213–1236 (2007).

    Article  Google Scholar 

  63. Usher, C. R., Michel, A. E. & Grassian, V. H. Reactions on mineral dust. Chem. Rev. 103, 4883–4940 (2003).

    Article  Google Scholar 

  64. Wheeler, K. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).

    Article  Google Scholar 

  65. Rosenfeld, D. et al. Flood or drought: how do aerosols affect precipitation? Science 321, 1309–1313 (2008).

    Article  Google Scholar 

  66. Surette, M. et al. What is “environmentally relevant”? A framework to advance research on the environmental fate and effects of engineered nanomaterials. Environ. Sci. Nano 8, 2414–2429 (2021).

    Article  Google Scholar 

  67. Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation (Springer, 1997).

  68. Hoose, C. & Möhler, O. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys. 12, 9817–9854 (2012).

    Article  Google Scholar 

  69. Vergara-Temprado, J. et al. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proc. Natl Acad. Sci. USA 115, 2687–2692 (2018).

    Article  Google Scholar 

  70. McCluskey, C. S. et al. Observations of ice nucleating particles over Southern Ocean waters. Geophys. Res. Lett. 45, 11989–11997 (2018).

    Article  Google Scholar 

  71. Wegener, A. Thermodynamik der Atmosphäre (J. A. Barth, 1911).

  72. Bergeron, T. On the physics of clouds and precipitation. In Proc. 5th Assembly of the Union Géodésique et Géophysique Internationale (UGGI) 156–180 (1935).

  73. Findeisen, W. et al. Colloidal meteorological processes in the formation of precipitation. Meteorol. Z. 24, 443–454 (2015).

    Article  Google Scholar 

  74. Marcolli, C. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys. 14, 2071–2104 (2014).

    Article  Google Scholar 

  75. Materić, D. et al. Micro- and nanoplastics in Alpine snow: a new method for chemical identification and (semi)quantification in the nanogram range. Environ. Sci. Technol. 54, 2353–2359 (2020).

    Article  Google Scholar 

  76. Allen, S. et al. An early comparison of nano to microplastic mass in a remote catchment’s atmospheric deposition. J. Hazard. Mater. Adv. 7, 100104 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

D.M.M. was funded by the Swiss National Science Foundation (grant number PCEFP2_186856). G.L. and Z.A.K. acknowledge Atmospheric Physics Chair funding at ETH Zurich and helpful discussions with U. Lohmann.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zamin A. Kanji or Denise M. Mitrano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Laura Revell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Xujia Jiang, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Supplementary Equations 1–4 and Supplementary Discussion (on Köhler theory, cloud droplet activation, heterogeneous ice nucleation and the Gibbs free-energy barrier for nucleation processes).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aeschlimann, M., Li, G., Kanji, Z.A. et al. Potential impacts of atmospheric microplastics and nanoplastics on cloud formation processes. Nat. Geosci. 15, 967–975 (2022). https://doi.org/10.1038/s41561-022-01051-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-01051-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing