Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climatic and tectonic drivers of late Oligocene Antarctic ice volume

Abstract

Cenozoic evolution of the Antarctic ice sheets is thought to be driven primarily by long-term changes in radiative forcing, but the tectonic evolution of Antarctica may also have played a substantive role. While deep-sea foraminiferal oxygen isotope records provide a combined measure of global continental ice volume and ocean temperature, they do not provide direct insights into non-radiative influences on Antarctic Ice Sheet dynamics. Here we present an Antarctic compilation of Cenozoic upper-ocean temperature for the Ross Sea and offshore Wilkes Land, generated by membrane lipid distributions from archaea. We find trends of ocean temperature, atmospheric carbon dioxide and oxygen isotopes largely co-vary. However, this relationship is less clear for the late Oligocene, when high-latitude cooling occurred despite interpretation of oxygen isotopes suggesting global warming and ice-volume loss. We propose this retreat of the West Antarctic Ice Sheet occurred in response to a tectonically driven marine transgression, with warm surface waters precluding marine-based ice-sheet growth. Marine ice-sheet expansion occurred only when ocean temperatures further cooled during the Oligocene–Miocene transition, with cold orbital conditions and low atmospheric carbon dioxide. Our results support a threshold response to atmospheric carbon dioxide, below which Antarctica’s marine ice sheets grow, and above which ocean warming exacerbates their retreat.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Map of the drill core and sample locations used in this study.
Fig. 2: SST compilation from Ross Sea and Wilkes Land sample sites.
Fig. 3: Climate indicators across the late Oligocene–early Miocene climate transition.

Data availability

Datasets generated during and/or analysed during the current study are available in Supplementary Data Tables 1–4 and online at https://doi.org/10.1594/PANGAEA.9468018990.

References

  1. Naish, T. et al. Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations. Nature 458, 322–328 (2009).

    Article  Google Scholar 

  2. Palike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006).

    Article  Google Scholar 

  3. Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article  Google Scholar 

  4. Naish, T. R. et al. Orbitally induced oscillations in the East Antarctic Ice Sheet at the Oligocene/Miocene boundary. Nature 413, 719–723 (2001).

    Article  Google Scholar 

  5. Rae, J. W. B. et al. Atmospheric CO2 over the past 66 million years from marine archives. Annu. Rev. Earth Planet. Sci. 49, 609–641 (2021).

    Article  Google Scholar 

  6. Kennett, J. P. et al. Development of the Circum-Antarctic Current. Science 186, 144–147 (1974).

    Article  Google Scholar 

  7. Wilson, D. S. & Luyendyk, B. P. West Antarctic paleotopography estimated at the Eocene–Oligocene climate transition. Geophys. Res. Lett. 36, L16302 (2009).

    Article  Google Scholar 

  8. Paxman, G. J. G., Gasson, E. G. W., Jamieson, S. S. R., Bentley, M. J. & Ferraccioli, F. Long-term increase in Antarctic Ice Sheet vulnerability driven by bed topography evolution. Geophys. Res. Lett. 47, e2020GL090003 (2020).

    Article  Google Scholar 

  9. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  Google Scholar 

  10. Pollard, D. & DeConto, R. M. Modelling West Antarctic Ice Sheet growth and collapse through the past five million years. Nature 458, 329–332 (2009).

    Article  Google Scholar 

  11. Levy, R. et al. Antarctic Ice Sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. Proc. Natl Acad. Sci. USA 113, 3453–3458 (2016).

    Article  Google Scholar 

  12. Gomez, N., Weber, M. E., Clark, P. U., Mitrovica, J. X. & Han, H. K. Antarctic ice dynamics amplified by Northern Hemisphere sea-level forcing. Nature 587, 600–604 (2020).

    Article  Google Scholar 

  13. Sorlien, C. C. et al. Oligocene development of the West Antarctic Ice Sheet recorded in eastern Ross Sea strata. Geology 35, 467–470 (2007).

    Article  Google Scholar 

  14. Paxman, G. J. G. et al. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 535, 109346 (2019).

    Article  Google Scholar 

  15. De Santis, L., Anderson, J. B., Brancolini, G. & Zayatz, I. in Geology and Seismic Stratigraphy of the Antarctic Margin (eds Cooper, A. K. et al.) 235–260 (American Geophysical Union, 1995).

  16. Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54, 19–61 (2013).

    Article  Google Scholar 

  17. Dunkley Jones, T. et al. OPTiMAL: a new machine learning approach for GDGT-based palaeothermometry. Climate 16, 2599–2617 (2020).

    Google Scholar 

  18. Hartman, J. D. et al. Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica—part 3: insights from Oligocene–Miocene TEX86-based sea surface temperature reconstructions. Climate 14, 1275–1297 (2018).

    Google Scholar 

  19. Sangiorgi, F. et al. Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene. Nat. Commun. 9, 317 (2018).

    Article  Google Scholar 

  20. Stilwell, J. D. & Feldmann, R. M. Paleobiology and Paleoenvironments of Eocene Rocks: McMurdo Sound, East Antarctica (American Geophysical Union, 2000).

  21. Galeotti, S. et al. Antarctic Ice Sheet variability across the Eocene–Oligocene boundary climate transition. Science 352, 76–80 (2016).

    Article  Google Scholar 

  22. Carter, A., Riley, T. R., Hillenbrand, C.-D. & Rittner, M. Widespread Antarctic glaciation during the late Eocene. Earth Planet. Sci. Lett. 458, 49–57 (2017).

    Article  Google Scholar 

  23. Liu, Z. et al. Global cooling during the Eocene–Oligocene Climate Transition. Science 323, 1187–1190 (2009).

    Article  Google Scholar 

  24. Feakins, S. J., Warny, S. & Lee, J.-E. Hydrologic cycling over Antarctica during the middle Miocene warming. Nat. Geosci. 5, 557–560 (2012).

    Article  Google Scholar 

  25. Lewis, A. R. & Ashworth, A. C. An early to middle Miocene record of ice-sheet and landscape evolution from the Friis Hills, Antarctica. GSA Bull. 128, 719–738 (2016).

    Article  Google Scholar 

  26. McKay, R. et al. Antarctic and Southern Ocean influences on late Pliocene global cooling. Proc. Natl Acad. Sci. USA 109, 6423–6428 (2012).

    Article  Google Scholar 

  27. Haywood, A. M. et al. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim. Past 9, 191–209 (2013).

    Article  Google Scholar 

  28. Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the late cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24 (2009).

  29. Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6, eaaz1346 (2020).

    Article  Google Scholar 

  30. Villa, G., Fioroni, C., Persico, D., Roberts, A. P. & Florindo, F. Middle Eocene to late Oligocene Antarctic glaciation/deglaciation and Southern Ocean productivity. Paleoceanography 29, 223–237 (2014).

    Article  Google Scholar 

  31. Hoem, F. S. et al. Temperate Oligocene surface ocean conditions offshore of Cape Adare, Ross Sea, Antarctica. Clim. Past 17, 1423–1442 (2021).

    Article  Google Scholar 

  32. Bijl, P. K. et al. Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica—part 2: insights from Oligocene–Miocene dinoflagellate cyst assemblages. Clim. Past 14, 1015–1033 (2018).

    Article  Google Scholar 

  33. Salabarnada, A. et al. Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica—part 1: insights from late Oligocene astronomically paced contourite sedimentation. Clim. Past 14, 991–1014 (2018).

    Article  Google Scholar 

  34. Leckie, R. M. & Webb, P.-N. Late Oligocene–early Miocene glacial record of the Ross Sea, Antarctica: evidence from DSDP Site 270. Geology 11, 578–582 (1983).

  35. Barrett, P. J. in Glacial Sedimentary Processes and Products (eds Hambrey, M. J. et al.) 259–287 (Blackwell, 2007).

  36. Pekar, S. F., DeConto, R. M. & Harwood, D. M. Resolving a late Oligocene conundrum: deep-sea warming and Antarctic glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 29–40 (2006).

    Article  Google Scholar 

  37. Hauptvogel, D. W., Pekar, S. F. & Pincay, V. Evidence for a heavily glaciated Antarctica during the late Oligocene “warming” (27.8–24.5 Ma): stable isotope records from ODP Site 690. Paleoceanography 32, 384–396 (2017).

    Article  Google Scholar 

  38. O’Brien, C. L. et al. The enigma of Oligocene climate and global surface temperature evolution. Proc. Natl Acad. Sci. USA 117, 25302–25309 (2020).

    Article  Google Scholar 

  39. Gasson, E., DeConto, R. M., Pollard, D. & Levy, R. H. Dynamic Antarctic Ice Sheet during the early to mid-Miocene. Proc. Natl Acad. Sci. USA 113, 3459–3464 (2016).

    Article  Google Scholar 

  40. Colleoni, F. et al. Past continental shelf evolution increased Antarctic Ice Sheet sensitivity to climatic conditions. Sci Rep. 8, 11323 (2018).

    Article  Google Scholar 

  41. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  Google Scholar 

  42. Kulhanek, D. K. et al. Revised chronostratigraphy of DSDP Site 270 and late Oligocene to early Miocene paleoecology of the Ross Sea sector of Antarctica. Glob. Planet. Change 178, 46–64 (2019).

    Article  Google Scholar 

  43. Marschalek, J. W. et al. A large West Antarctic Ice Sheet explains early Neogene sea-level amplitude. Nature 600, 450–455 (2021).

    Article  Google Scholar 

  44. Hill, D. J., Bolton, K. P. & Haywood, A. M. Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance. Nat. Commun. 8, 14376 (2017).

    Article  Google Scholar 

  45. Levy, R. H. et al. Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections. Nat. Geosci. 12, 132–137 (2019).

    Article  Google Scholar 

  46. Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

    Article  Google Scholar 

  47. Greenop, R. et al. Orbital forcing, ice volume, and CO2 across the Oligocene–Miocene Transition. Paleoceanogr. Paleoclimatology 34, 316–328 (2019).

    Article  Google Scholar 

  48. Locarnini, M. M. et al. World Ocean Atlas 2018, Volume 1: Temperature (2018).

  49. Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part 1 42, 641–673 (1995).

    Article  Google Scholar 

  50. Liebrand, D. et al. Cyclostratigraphy and eccentricity tuning of the early Oligocene through early Miocene (30.1–17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis Ridge Site 1264. Earth Planet. Sci. Lett. 450, 392–405 (2016).

    Article  Google Scholar 

  51. Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. Ser. C 57, 399–418 (2008).

    Article  Google Scholar 

  52. Bijl, P. K., Houben, A. J. P., Bruls, A., Pross, J. & Sangiorgi, F. Stratigraphic calibration of Oligocene–Miocene organic-walled dinoflagellate cysts from offshore Wilkes Land, East Antarctica, and a zonation proposal. J. Micropalaeontol. 37, 105–138 (2018).

    Article  Google Scholar 

  53. Harwood, D. M. & Levy, R. H. in Paleobiology and Paleoenvironments of Eocene Rocks: McMurdo Sound, East Antarctica (eds Stilwel, J. D. & Feldman, R. M.) 1–18 (American Geophysical Union, 2000).

  54. Barrett, P. J. (ed) Antarctic Cenozoic History from the CIROS-1 Drillhole, McMurdo Sound (DSIR, 1989).

  55. Hambrey, M. J., Barrett, P. J. & Robinson, P. H. in Antarctic Cenozoic History from the CIROS-1 Drillhole, McMurdo Sound (ed. Barrett, P. J.) 23–48 (DSIR, 1989).

  56. Roberts, A. P., Wilson, G. S., Harwood, D. M. & Verosub, K. L. Glaciation across the Oligocene–Miocene boundary in southern McMurdo Sound, Antarctica: new chronology from the CIROS-1 drill hole. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 113–130 (2003).

    Article  Google Scholar 

  57. Coccioni, R. & Galeotti, S. Foraminiferal biostratigraphy and palaeoecology of the CIROS-1 core from McMurdo Sound (Ross Sea, Antarctica). Terra Antarctica 4, 103–117 (1997).

    Google Scholar 

  58. Hannah, M. J. Climate controlled dinoflagellate distribution in late Eocene–earliest Oligocene strata from CIROS-1 drillhole, McMurdo Sound, Antarctica. Terra Antarctica 4, 73–78 (1997).

    Google Scholar 

  59. Wilson, G. S., Roberts, A. P., Verosub, K. L., Florindo, F. & Sagnotti, L. Magnetobiostratigraphic chronology of the Eocene–Oligocene transition in the CIROS-1 core, Victoria Land margin, Antarctica: implications for Antarctic glacial history. GSA Bull. 110, 35–47 (1998).

    Article  Google Scholar 

  60. Clowes, C. D., Hannah, M. J., Wilson, G. J. & Wrenn, J. H. Marine palynostratigraphy and new species from the Cape Roberts drill-holes, Victoria Land Basin, Antarctica. Mar. Micropaleontol. 126, 65–84 (2016).

    Article  Google Scholar 

  61. Houben, A. J. P., Bijl, P. K., Guerstein, G. R., Sluijs, A. & Brinkhuis, H. Malvinia escutiana, a new biostratigraphically important Oligocene dinoflagellate cyst from the Southern Ocean. Rev. Palaeobot. Palynol. 165, 175–182 (2011).

    Article  Google Scholar 

  62. Houben, A. J. P. et al. Reorganization of Southern Ocean plankton ecosystem at the onset of Antarctic glaciation. Science 340, 341–344 (2013).

    Article  Google Scholar 

  63. Ogg, J. G. in The Geologic Time Scale (eds Gradstein, F. M. et al.) 85–113 (Elsevier, 2012); https://doi.org/10.1016/B978-0-444-59425-9.00005-6

  64. Prebble, J. G., Raine, J. I., Barrett, P. J. & Hannah, M. J. Vegetation and climate from two Oligocene glacioeustatic sedimentary cycles (31 and 24 Ma) cored by the Cape Roberts Project, Victoria Land Basin, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 41–57 (2006).

    Article  Google Scholar 

  65. Truswell, E. M. & Drewry, D. J. Distribution and provenance of recycled palynomorphs in surficial sediments of the Ross Sea, Antarctica. Mar. Geol. 59, 187–214 (1984).

    Article  Google Scholar 

  66. Watkins, D. K., Wise, S. W. & Villa, G. Calcareous nannofossils from Cape Roberts Project drillhole CRP-3, Victoria Land Basin, Antarctica. Terra Antarctica 8, 339–346 (2001).

    Google Scholar 

  67. Galeotti, S. et al. Cyclochronology of the Eocene–Oligocene transition from the Cape Roberts Project-3 core, Victoria Land Basin, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 335–336, 84–94 (2012).

    Article  Google Scholar 

  68. Hayes, D. E., et al. Initial Reports of the Deep Sea Drilling Project (US Government Printing Office, 1975).

  69. Florindo, F., Wilson, G. S., Roberts, A. P., Sagnotti, L. & Verosub, K. L. Magnetostratigraphic chronology of a late Eocene to early Miocene glacimarine succession from the Victoria Land Basin, Ross Sea, Antarctica. Glob. Planet. Change 45, 207–236 (2005).

    Article  Google Scholar 

  70. Naish, T. R., Wilson, G. S., Dunbar, G. B. & Barrett, P. J. Constraining the amplitude of late Oligocene bathymetric changes in western Ross Sea during orbitally-induced oscillations in the East Antarctic Ice Sheet: (2) implications for global sea-level changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 260, 66–76 (2008).

    Article  Google Scholar 

  71. Kim, J.-H. et al. Holocene subsurface temperature variability in the eastern Antarctic continental margin. Geophys. Res. Lett. 39, L06705 (2012).

    Google Scholar 

  72. Fielding, C. R. et al. Sequence stratigraphy of the ANDRILL AND-2A drillcore, Antarctica: a long-term, ice-proximal record of early to mid-Miocene climate, sea-level and glacial dynamism. Palaeogeogr. Palaeoclimatol. Palaeoecol. 305, 337–351 (2011).

    Article  Google Scholar 

  73. Passchier, S. et al. Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica. GSA Bull. https://doi.org/10.1130/B30334.1 (2011).

  74. Crampton, J. S. et al. Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years. Proc. Natl Acad. Sci. USA 113, 6868–6873 (2016).

    Article  Google Scholar 

  75. Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V. M. & Sinninghe Damsté, J. S. Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization–mass spectrometry. Anal. Chem. 79, 2940–2944 (2007).

    Article  Google Scholar 

  76. Hopmans, E. C. et al. The effect of improved chromatography on GDGT-based palaeoproxies. Org. Geochem. 93, 1–6 (2016).

    Article  Google Scholar 

  77. Schouten, S. et al. An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures. Geochem. Geophys. Geosyst. 14, 5263–5285 (2013).

    Article  Google Scholar 

  78. Kim, J.-H. et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta 74, 4639–4654 (2010).

    Article  Google Scholar 

  79. Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 383–464 (Cambridge Univ. Press, 2013).

  80. Sosdian, S. M. et al. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy. Earth Planet. Sci. Lett. 498, 362–376 (2018).

    Article  Google Scholar 

  81. Martínez-Botí, M. A. et al. Plio–Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518, 49–54 (2015).

    Article  Google Scholar 

  82. Greenop, R., Foster, G. L., Wilson, P. A. & Lear, C. H. Middle Miocene climate instability associated with high-amplitude CO2 variability. Paleoceanography 29, 845–853 (2014).

    Article  Google Scholar 

  83. Badger, M. P. S. et al. Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels. Clim. Past 15, 539–554 (2019).

    Article  Google Scholar 

  84. Mejía, L. M. et al. A diatom record of CO2 decline since the late Miocene. Earth Planet. Sci. Lett. 479, 18–33 (2017).

    Article  Google Scholar 

  85. Super, J. R. et al. North Atlantic temperature and \({p}_{{\rm{CO}}_{2}}\) coupling in the early–middle Miocene. Geology 46, 519–522 (2018).

  86. Witkowski, C. R., Weijers, J. W. H., Blais, B., Schouten, S. & Damsté, J. S. S. Molecular fossils from phytoplankton reveal secular \({p}_{{\rm{CO}}_{2}}\) trend over the Phanerozoic. Sci. Adv. https://doi.org/10.1126/sciadv.aat4556 (2018).

  87. Meyers, S., Malinverno, A., Hinnov, L., Zeeden, C. & Moron, V. astrochron: A Computational Tool for Astrochronology (2019).

  88. Wilson, D. S., Pollard, D., DeConto, R. M., Jamieson, S. S. R. & Luyendyk, B. P. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene. Geophys. Res. Lett. 40, 4305–4309 (2013).

    Article  Google Scholar 

  89. DeConto, R. M. et al. Thresholds for Cenozoic bipolar glaciation. Nature 455, 652–656 (2008).

    Article  Google Scholar 

  90. Duncan, B. et al. Glycerol dialkyl glycerol tetraether (GDGT) abundances, age–depth tie points and biostratigraphic age events for McMurdo erratics, CIROS-1, CRP-2/2 A, DSDP 270, DSDP 274, ANDRILL 2 A, ANDRILL 1B. PANGAEA https://doi.org/10.1594/PANGAEA.946801 (2022).

Download references

Acknowledgements

The authors are grateful for access to samples from the IODP core repository at Texas A&M University for DSDP Sites 270 and 274 and to the Alfred Wegener Institute for access to samples from the Cape Roberts Project. This study was funded via an Antarctica New Zealand Sir Robin Irvine PhD Scholarship, Scientific Committee of Antarctic Research Fellowship and Rutherford Foundation Postdoctoral Fellowship (RFT-VUW1804-PD) awarded to B.D., with additional funding by the Royal Society Te Apārangi Marsden Fund award MFP-VUW1808 (B.D. and R.M.) and the New Zealand Ministry of Business Innovation and Employment through the Antarctic Science Platform (ANTA1801) and contract C05X1001 (B.D., R.M., R.L., T.N. and J.G.P.). The Natural Environment Research Council funded J.B. (standard grant Ne/I00646X/1). J.B. and T.D.J. also acknowledge support from Natural Environment Research Council grant NE/P013112/1. D.K.K. was supported by US National Science Foundation award OCE-1326927. The authors are grateful for support from IODP and support in kind from the University of Birmingham and Yale University. We thank S. Schouten (NIOZ) for laboratory support and assistance with temperature data and J. Super for assistance with sample analysis while at Yale University.

Author information

Authors and Affiliations

Authors

Contributions

B.D, R.M., J.B., R.L. and T.N. designed the research. B.D. processed samples for DSDP 270, DSDP 274 and CRP-2/2A. S.K. conducted analysis on DSDP 270, DSDP 274 and CRP-2/2A. F.S. processed samples and conducted analysis on AND-2A. F.H. processed samples and conducted analysis on additional samples for DSDP 274. V.W. processed samples and conducted analysis on AND-1B, CIROS-1 and the McMurdo Erratics. C.W. processed samples and conducted analysis on AND-1B. J.G.P. and C.C. developed the age model for CIROS-1. S.R.M. contributed statistical analyses. E.G. provided ice-volume model output and advised on interpretation. T.D.J. assisted with temperature calibration interpretations. D.K.K. and C.K. assisted with sedimentological and environmental interpretations for DSDP 270. H.M. advised on laboratory processing and data interpretation. G.T.V. advised on GDGT data interpretation. B.D. created the figures and wrote the text with assistance from all authors, in particular R.M., J.B., R.L. and T.N.

Corresponding author

Correspondence to B. Duncan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Tom Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Age model for CIROS-1.

Age model for CIROS-1, based on the paleo-magnetic record from Wilson et al. (1998)59 and new biostratigraphic events described in Supplementary Data Table 1. The preferred age model is shown in green (model 1), as described in Methods section.

Supplementary information

Supplementary Information

Supplementary Information, Table 1 and Figs. 1–8.

Supplementary Data

Supplementary Data Tables 1–4.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duncan, B., McKay, R., Levy, R. et al. Climatic and tectonic drivers of late Oligocene Antarctic ice volume. Nat. Geosci. (2022). https://doi.org/10.1038/s41561-022-01025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41561-022-01025-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing