Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mid-Pliocene El Niño/Southern Oscillation suppressed by Pacific intertropical convergence zone shift

Abstract

The El Niño/Southern Oscillation (ENSO), the dominant driver of year-to-year climate variability in the equatorial Pacific Ocean, impacts climate pattern across the globe. However, the response of the ENSO system to past and potential future temperature increases is not fully understood. Here we investigate ENSO variability in the warmer climate of the mid-Pliocene (~3.0–3.3 Ma), when surface temperatures were ~2–3 °C above modern values, in a large ensemble of climate models—the Pliocene Model Intercomparison Project. We show that the ensemble consistently suggests a weakening of ENSO variability, with a mean reduction of 25% (±16%). We further show that shifts in the equatorial Pacific mean state cannot fully explain these changes. Instead, ENSO was suppressed by a series of off-equatorial processes triggered by a northward displacement of the Pacific intertropical convergence zone: weakened convective feedback and intensified Southern Hemisphere circulation, which inhibit various processes that initiate ENSO. The connection between the climatological intertropical convergence zone position and ENSO we find in the past is expected to operate in our warming world with important ramifications for ENSO variability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulated mid-Pliocene tropical variability changes.
Fig. 2: Equatorial Pacific Ocean changes.
Fig. 3: ITCZ–ENSO relationship.
Fig. 4: Changes to potential ENSO triggers.
Fig. 5: Energetic constraints for the ITCZ position.
Fig. 6: Schematic of the drivers of suppressed ENSO activity in the mPWP.

Similar content being viewed by others

Data availability

PlioMIP2 data (with exception of IPSL-CM6A and GISS2.1 G) are available upon request to Alan M. Haywood (a.m.haywood@leeds.ac.uk). PlioMIP2 data from CESM2, EC-Earth3.3, NorESM1-F, IPSL-CM6A and GISS2.1 G can be obtained directly through the Earth System Grid Federation repository (ESGF; https://esgf-node.llnl.gov/search/cmip6/). Observational SST and precipitation data can be found in the NOAA-USA (NOAA Extended Reconstructed SST version 5) and NCAR-USA (Global precipitation climatology project) online repositories, respectively.

Code availability

Computer codes are available at https://github.com/gmpontes/Nature_Geoscience_ENSO_ITCZ_PlioMIP.git or upon request to the corresponding author.

References

  1. McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006).

    Article  Google Scholar 

  2. Santoso, A. et al. Dynamics and predictability of El Niño–Southern Oscillation: an Australian perspective on progress and challenges. Bull. Am. Meteorol. Soc. 100, 403–420 (2019).

    Article  Google Scholar 

  3. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 3, 391–397 (2010).

    Article  Google Scholar 

  4. Taschetto, A. S. et al. Cold tongue and warm pool ENSO Events in CMIP5: mean state and future projections. J. Clim. 27, 2861–2885 (2014).

    Article  Google Scholar 

  5. Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    Article  Google Scholar 

  6. Santoso, A. et al. Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections. Nature 504, 126–130 (2013).

    Article  Google Scholar 

  7. Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859 (2015).

    Article  Google Scholar 

  8. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article  Google Scholar 

  9. Mamalakis, A. et al. Zonally contrasting shifts of the tropical rain belt in response to climate change. Nat. Clim. Change https://doi.org/10.1038/s41558-020-00963-x (2021).

  10. Emile-Geay, J. et al. Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nat. Geosci. 9, 168–173 (2016).

    Article  Google Scholar 

  11. Grothe, P. R. et al. Enhanced El Niño–Southern Oscillation variability in recent decades. Geophys. Res. Lett. https://doi.org/10.1029/2019gl083906 (2019).

  12. Ford, H. L., Ravelo, A. C. & Polissar, P. J. Reduced El Niño–Southern Oscillation during the Last Glacial Maximum. Science 347, 255–258 (2015).

    Article  Google Scholar 

  13. Wara, M. W., Ravelo, A. C. & Delaney, M. L. Permanent El Niño-like conditions during the Pliocene Warm Period. Science 309, 758–761 (2005).

    Article  Google Scholar 

  14. Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T. & Otto-Bliesner, B. L. Pliocene warmth consistent with greenhouse gas forcing. Geophys. Res. Lett. 46, 9136–9144 (2019).

    Article  Google Scholar 

  15. Wycech, J. B., Gill, E., Rajagopalan, B., Marchitto, T. M. & Molnar, P. H. Multiproxy reduced-dimension reconstruction of Pliocene equatorial Pacific sea surface temperatures. Paleoceanogr. Paleoclimatol. 35, e2019PA003685 (2020).

    Article  Google Scholar 

  16. O’Brien, C. L. et al. High sea surface temperatures in tropical warm pools during the Pliocene. Nat. Geosci. 7, 606–611 (2014).

    Article  Google Scholar 

  17. Brierley, C. M. et al. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 323, 1714–1718 (2009).

    Article  Google Scholar 

  18. Watanabe, T. et al. Permanent El Niño during the Pliocene Warm Period not supported by coral evidence. Nature 471, 209–211 (2011).

    Article  Google Scholar 

  19. Scroxton, N. et al. Persistent El Niño–Southern Oscillation variation during the Pliocene epoch. Paleoceanography 26, PA2215 (2011).

    Article  Google Scholar 

  20. White, S. M. & Ravelo, A. C. Dampened El Niño in the early Pliocene Warm Period. Geophys. Res. Lett. https://doi.org/10.1029/2019GL085504 (2020).

  21. Burke, K. D. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).

    Article  Google Scholar 

  22. McClymont, E. L. et al. Lessons from a high-CO2 world: an ocean view from 3 million years ago. Clim. Past 16, 1599–1615 (2020).

    Article  Google Scholar 

  23. Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene Warm Period. Nat. Commun. 6, 10646 (2016).

    Article  Google Scholar 

  24. Haywood, A. M. et al. Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (experiment 2). Geosci. Model Dev. 4, 571–577 (2011).

    Article  Google Scholar 

  25. Haywood, A. M. et al. The Pliocene Model Intercomparison Project (PlioMIP) phase 2: scientific objectives and experimental design. Clim. Past 12, 663–675 (2016).

    Article  Google Scholar 

  26. Pontes, G. M., Wainer, I., Prado, L. & Brierley, C. Reduced Atlantic variability in the mid-Pliocene. Climatic Change 160, 445–461 (2020).

    Article  Google Scholar 

  27. Jin, F. F., Kim, S. T. & Bejarano, L. A coupled-stability index for ENSO. Geophys. Res. Lett. 33, L23708 (2006).

    Article  Google Scholar 

  28. Oldeman, A. M. et al. Reduced El-Niño variability in the mid-Pliocene according to the PlioMIP2 ensemble. Clim. Past 17, 2427–2450 (2021).

  29. Wang, B. et al. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl Acad. Sci. USA 116, 22512–22517 (2019).

    Article  Google Scholar 

  30. Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

    Article  Google Scholar 

  31. Hong, L.-C., LinHo & Jin, F.-F. A Southern Hemisphere booster of super El Niño. Geophys. Res. Lett. 41, 2142–2149 (2014).

    Article  Google Scholar 

  32. Zhang, H., Clement, A. & Di Nezio, P. The South Pacific meridional mode: a mechanism for ENSO-like variability. J. Clim. 27, 769–783 (2014).

    Article  Google Scholar 

  33. Haywood, A. M. et al. The Pliocene Model Intercomparison Project phase 2: large-scale climate features and climate sensitivity. Clim. Past 16, 2095–2123 (2020).

    Article  Google Scholar 

  34. Okajima, H., Xie, S.-P. & Numaguti, A. Interhemispheric coherence of tropical climate variability: effect of the climatological ITCZ. J. Meteorol. Soc. Jpn. Ser. 2 81, 1371–1386 (2003).

    Article  Google Scholar 

  35. Hu, S. & Fedorov, A. V. Cross-equatorial winds control El Niño diversity and change. Nat. Clim. Change 8, 798–802 (2018).

    Article  Google Scholar 

  36. Lübbecke, J. F. & McPhaden, M. J. Assessing the twenty-first-century shift in ENSO variability in terms of the Bjerknes stability index. J. Clim. 27, 2577–2587 (2014).

    Article  Google Scholar 

  37. Zhao, B. & Fedorov, A. The effects of background zonal and meridional winds on ENSO in a coupled GCM. J. Clim. https://doi.org/10.1175/jcli-d-18-0822.1 (2019).

  38. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  39. Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).

    Article  Google Scholar 

  40. Chen, D. et al. Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci. 8, 339–345 (2015).

    Article  Google Scholar 

  41. Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014).

    Article  Google Scholar 

  42. Tian, B. & Dong, X. The double-ITCZ bias in CMIP3, CMIP5 and CMIP6 models based on annual mean precipitation. Geophys. Res. Lett. https://doi.org/10.1029/2020GL087232 (2020).

  43. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  44. Han, Z. et al. Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison Project phase 2 (PlioMIP2) ensemble. Clim. Past 17, 2537–2558 (2021).

    Article  Google Scholar 

  45. Hill, D. J. et al. Evaluating the dominant components of warming in Pliocene climate simulations. Clim. Past 10, 79–90 (2014).

    Article  Google Scholar 

  46. Yun, K. S., Timmermann, A. & Stuecker, M. Synchronized spatial shifts of Hadley and Walker circulations. Earth Syst. Dyn. 12, 121–132 (2021).

    Article  Google Scholar 

  47. Pontes, G. M. et al. Drier tropical and subtropical Southern Hemisphere in the mid-Pliocene Warm Period. Sci. Rep. 10, 13458 (2020).

    Article  Google Scholar 

  48. Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).

    Article  Google Scholar 

  49. Fedorov, A. V. et al. Patterns and mechanisms of early Pliocene warmth. Nature 496, 43–49 (2013).

    Article  Google Scholar 

  50. Koenig, S. J. et al. Ice sheet model dependency of the simulated Greenland ice sheet in the mid-Pliocene. Clim. Past 11, 369–381 (2015).

    Article  Google Scholar 

  51. Fischer, H. et al. Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nat. Geosci. 11, 474–485 (2018).

    Article  Google Scholar 

  52. Zhu, J., Poulsen, C. J. & Otto-Bliesner, B. L. High climate sensitivity in CMIP6 model not supported by paleoclimate. Nat. Clim. Change 10, 378–379 (2020).

    Article  Google Scholar 

  53. Dowsett, H. et al. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Clim. Past 12, 1519–1538 (2016).

    Article  Google Scholar 

  54. Salzmann, U., Haywood, A. M., Lunt, D. J., Valdes, P. J. & Hill, D. J. A new global biome reconstruction and data-model comparison for the Middle Pliocene. Glob. Ecol. Biogeogr. 17, 432–447 (2008).

    Article  Google Scholar 

  55. Rosenbloom, N. A., Otto-Bliesner, B. L., Brady, E. C. & Lawrence, P. J. Simulating the mid-Pliocene Warm Period with the CCSM4 model. Geosci. Model Dev. 6, 549–561 (2013).

    Article  Google Scholar 

  56. Stepanek, C. & Lohmann, G. Modelling mid-Pliocene climate with COSMOS. Geosci. Model Dev. 5, 1221–1243 (2012).

    Article  Google Scholar 

  57. Zheng, W., Zhang, Z., Chen, L. & Yu, Y. The mid-Pliocene climate simulated by FGOALS-g2. Geosci. Model Dev. 6, 1127–1135 (2013).

    Article  Google Scholar 

  58. Chandler, M. A., Sohl, L. E., Jonas, J. A., Dowsett, H. J. & Kelley, M. Simulations of the mid-Pliocene Warm Period using two versions of the NASA/GISS ModelE2-R Coupled Model. Geosci. Model Dev. 6, 517–531 (2013).

    Article  Google Scholar 

  59. Bragg, F. J., Lunt, D. J. & Haywood, A. M. Mid-Pliocene climate modelled using the UK Hadley Centre Model: PlioMIP experiments 1 and 2. Geosci. Model Dev. 5, 1109–1125 (2012).

    Article  Google Scholar 

  60. Contoux, C., Ramstein, G. & Jost, A. Modelling the mid-Pliocene Warm Period climate with the IPSL coupled model and its atmospheric component LMDZ5A. Geosci. Model Dev. 5, 903–917 (2012).

    Article  Google Scholar 

  61. Chan, W.-L., Abe-Ouchi, A. & Ohgaito, R. Simulating the mid-Pliocene climate with the MIROC general circulation model: experimental design and initial results. Geosci. Model Dev. 4, 1035–1049 (2011).

    Article  Google Scholar 

  62. Kamae, Y. & Ueda, H. Mid-Pliocene global climate simulation with MRI-CGCM2.3: set-up and initial results of PlioMIP experiments 1 and 2. Geosci. Model Dev. 5, 793–808 (2012).

    Article  Google Scholar 

  63. Zhang, Z. et al. Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci. Model Dev. 5, 523–533 (2012).

    Article  Google Scholar 

  64. Peltier, W. R. & Vettoretti, G. Dansgaard–Oeschger oscillations predicted in a comprehensive model of glacial climate: a “kicked” salt oscillator in the Atlantic. Geophys. Res. Lett. 41, 7306–7313 (2014).

    Article  Google Scholar 

  65. Chandan, D. & Peltier, W. R. Regional and global climate for the mid-Pliocene using the University of Toronto version of CCSM4 and PlioMIP2 boundary conditions. Clim. Past 13, 919–942 (2017).

    Article  Google Scholar 

  66. Feng, R., Otto‐Bliesner, B. L., Brady, E. C. & Rosenbloom, N. Increased climate response and Earth system sensitivity from CCSM4 to CESM2 in mid‐Pliocene simulations. J. Adv. Model. Earth Syst. 12, e2019MS002033 (2020).

    Article  Google Scholar 

  67. Stepanek, C., Samakinwa, E., Knorr, G. & Lohmann, G. Contribution of the coupled atmosphere–ocean–sea ice–vegetation model COSMOS to the PlioMIP2. Clim. Past 16, 2275–2323 (2020).

    Article  Google Scholar 

  68. Zheng, J., Zhang, Q., Li, Q., Zhang, Q. & Cai, M. Contribution of sea ice albedo and insulation effects to Arctic amplification in the EC-Earth Pliocene simulation. Clim. Past 15, 291–305 (2019).

    Article  Google Scholar 

  69. Hunter, S. J., Haywood, A. M., Dolan, A. M. & Tindall, J. C. The HadCM3 contribution to PlioMIP phase 2. Clim. Past 15, 1691–1713 (2019).

    Article  Google Scholar 

  70. Lurton, T. et al. Implementation of the CMIP6 forcing data in the IPSL-CM6A-LR model. J. Adv. Model. Earth Syst. 12, e2019MS001940 (2020).

    Article  Google Scholar 

  71. Tan, N. et al. Modeling a modern-like pCO2 warm period (Marine Isotope Stage KM5c) with two versions of an Institut Pierre Simon Laplace atmosphere–ocean coupled general circulation model. Clim. Past 16, 1–16 (2020).

    Article  Google Scholar 

  72. Chan, W.-L. & Abe-Ouchi, A. Pliocene Model Intercomparison Project (PlioMIP2) simulations using the Model for Interdisciplinary Research on Climate (MIROC4m). Clim. Past 16, 1523–1545 (2020).

    Article  Google Scholar 

  73. Kamae, Y., Yoshida, K. & Ueda, H. Sensitivity of Pliocene climate simulations in MRI-CGCM2.3 to respective boundary conditions. Clim. Past 12, 1619–1634 (2016).

    Article  Google Scholar 

  74. Li, X., Guo, C., Zhang, Z., Otterå, O. H. & Zhang, R. PlioMIP2 simulations with NorESM-L and NorESM1-F. Clim. Past 16, 183–197 (2020).

    Article  Google Scholar 

  75. Santoso, A., Mcphaden, M. J. & Cai, W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys. 55, 1079–1129 (2017).

    Article  Google Scholar 

  76. Johnson, N. C. & Xie, S. P. Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci. 3, 842–845 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the São Paulo Research Foundation (FAPESP-Brazil grants no. 2016/23670-0, no. 2019/0882-1 and no. 2021/11035-6), the Australian Research Council (ARC FT160100495) including the ARC Centre of Excellence for Climate Extremes (CE110001028) and the NCI National Facility, Canberra. A.S. is supported by CSHOR, a joint research centre between QNLM and CSIRO, and the Australian Government’s National Environmental Science Program. PlioMIP2 experiments were supported by FP7 Ideas Programme: European Research Council, Past Earth Network, CEMAC—University of Leeds, JSPS, Earth Simulator at JAMSTEC, Helmholtz Climate Initiative REKLIM, Alfred Wegener Institute’s research programme Marine, Coastal and Polar Systems, Swedish Research Council, Swedish National Infrastructure for Computing, Canadian Innovation Foundation, UNINETT Sigma2—the National Infrastructure for High Performance Computing and Data Storage in Norway, Très Grand Centre de calcul du CEA—GENCI, National Science Foundation (NSF—USA), SURFsara Dutch National Computing and Netherlands Organisation for Scientific Research, Exact Sciences. This research is sponsored by National Science Foundation Grants 2103055 to R.F. and 1418411 to B.O.-B. The CESM project is supported primarily by the National Science Foundation. This material is based on work supported by NCAR, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement 1852977. Computing and data storage resources, including the Cheyenne supercomputer (https://doi.org/10.5065/D6RX99HX), were provided by the Computational and Information Systems Laboratory (CISL) at NCAR.

Author information

Authors and Affiliations

Authors

Contributions

G.M.P., A.S.T., A.S.G. and A.S. designed the study. G.M.P., A.S.T., A.S.G., A.S. and I.W. contributed to the interpretation of the data and discussions. G.M.P. conducted the analysis, prepared the figures and wrote the original manuscript. A.S.G. produced the schematic in Fig. 6. A.M.H., W.-L.C., A.A.-O., C.S., G.L., S.J.H., J.C.T., M.A.C., L.E.S., W.R.P., D.C., Y.K., K.H.N., Z.Z., C.C., N.T., Q.Z., B.L.O.-B., E.C.B., R.F., A.S.v.d.H. and M.L.J.B. performed the PlioMIP2 simulations. G.M.P. and A.S.T. performed the CAM4 experiments. All authors commented and reviewed the manuscript.

Corresponding author

Correspondence to Gabriel M. Pontes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Matthew Collins, Soon-Il An and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Change in amplitude of Sea Surface Temperature anomalies in the PlioMIP1 models.

SST anomalies were computed by removing the mean annual cycle. Amplitude is defined as the standard deviation of the SST anomaly timeseries. Stippling indicates where the change is significant at the 95% level. Map created using the Basemap library for Python.

Extended Data Fig. 2 Mid-Pliocene changes in eastern Pacific SST variability by frequency bands.

Percentage change in Niño3 (5°N-5°S; 150°-90°W) standard deviation separated by interannual (dark blue) and low-frequency (>10 yr; light blue) variability. The amplitude of low-frequency oscillations is evaluated through the variance of the 11-year running mean Niño3 time series in each model. The amplitude of the interannual period is estimated as the variance of the residual time series, that is, original Niño3 timeseries subtracted from the Niño3 decadal timeseries.

Extended Data Fig. 3 Relationship between ENSO amplitude change and zonal SST difference.

Zonal SST change evaluated as the difference between the cold tongue (5°S-5°N; 120°W-100°W) and warm pool regions (5°S-5°N; 150°E-170°E) in the equatorial Pacific. PlioMIP1 models are represented by magenta squares while PlioMIP2 models are represented by red circles.

Extended Data Fig. 4 Changes in the low-level wind (850hPa) divergence.

a PlioMIP1 and b PlioMIP2 from preindustrial. Stippling indicates where changes are significant at the 95% level. A consistent increased convergence in the tropical North Pacific indicates a northward ITCZ shift across the Pacific Ocean. Maps created using the Basemap library for Python.

Extended Data Fig. 5 ENSO non-linear characteristics for each PlioMIP2 model.

Relationship between Niño3 SST anomalies (x-axis, °C) and Niño3 rainfall (y-axis, mm/day) for the last 100 years of the pre-industrial control simulation of each model. Observed relationship was computed from GPCP and ERSSTv5 datasets from 1979 to 2020. Models that simulate rainfall skew greater than 1 and rainfall anomalies greater than 5 mm/day are marked with a ‘red star’.

Extended Data Fig. 6 ITCZ-ENSO relationship for selected models.

Relationship between the change in the Niño3 amplitude and the mean October-to-February ITCZ shift for the models that correctly captured ENSO non-linear characteristics.

Extended Data Fig. 7 North Pacific Meridional Mode amplitude change.

Simulated change in the amplitude of the North Pacific Meridional Mode.

Extended Data Fig. 8 Atmospheric circulation changes for PlioMIP1 models.

a multi-model mean DJF precipitation change (mPWP minus pre-industrial). Stippling indicates where changes are significant at the 95% level. b Changes in the meridional streamfunction in the AGCM experiment forced with climatological PlioMIP1 SST and sea-ice (see Methods). c multi-model mean change in low-level (850 hPa) winds and streamfunction. Wind changes are only plotted where there is a significant change at the 95% level. Map created using the Basemap library for Python.

Extended Data Table 1 Models used in the present study
Extended Data Table 2 PlioMIP phases 1 and 2 boundary conditions

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pontes, G.M., Taschetto, A.S., Sen Gupta, A. et al. Mid-Pliocene El Niño/Southern Oscillation suppressed by Pacific intertropical convergence zone shift. Nat. Geosci. 15, 726–734 (2022). https://doi.org/10.1038/s41561-022-00999-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00999-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing