Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early silicic magmatism on a differentiated asteroid

Abstract

Unlike the other terrestrial planets, Earth has a substantial silica-rich continental crust with a bulk andesitic composition. A small number of meteorites with andesitic bulk compositions have been identified that are thought to be the products of partial melting of chondritic protoliths, a mode of petrogenesis distinct from that of Earth’s continental crust. Here we show, using geochemical analyses, that unlike other known andesitic meteorites, Erg Chech 002 has strongly fractionated and low abundances of the highly siderophile elements and mineralogy consistent with origin from a melt. The meteorite’s bulk composition, which is similar to terrestrial andesites, cannot be explained by partial melting of basaltic lithologies and instead requires a metal-free chondritic source. We argue that Erg Chech 002 probably formed by ~15–25% melting of the mantle of an alkali-undepleted differentiated asteroid. Our findings suggest that extensive silicate differentiation after metal–silicate equilibration of chondritic parent bodies was already occurring within the first 2.25 million years of Solar System history and that andesitic crust formation does not necessarily require plate tectonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thin-section map and mineral chemistry of EC 002.
Fig. 2: Bulk rock lithophile element chemistry of EC 002 and similar achondrite.
Fig. 3: Bulk rock CI-chondrite-normalized HSE abundances of achondrite meteorites and the terrestrial UCC.

Similar content being viewed by others

Data availability

All data in this study are available as online supplementary tables included with the manuscript. Supplementary Data 1 and 2 are also available on the EarthChem database (submission ID 2326).

References

  1. Rudnick, R. L. & Gao, S. in Treatise on Geochemistry Vol. 3 (ed. Rudnick, R. L.) 1–51 (Elsevier, 2014).

  2. Campbell, I. H. & Taylor, S. R. No water, no granites—no oceans, no continents. Geophys. Res. Lett. 10, 1061–1064 (1983).

    Article  Google Scholar 

  3. Day, J. M. D. et al. Early formation of evolved asteroidal crust. Nature 457, 179–182 (2009).

    Article  Google Scholar 

  4. Srinivasan, P. et al. Silica-rich volcanism in the early Solar System dated at 4.565 Ga. Nat. Commun. 9, 3036 (2018).

    Article  Google Scholar 

  5. Collinet, M. & Grove, T. L. Widespread production of silica- and alkali-rich melts at the onset of planetesimal melting. Geochim. Cosmochim. Acta 277, 334–357 (2020).

    Article  Google Scholar 

  6. Peucker-Ehrenbrink, B. & Jahn, B.-M. Rhenium–osmium isotope systematics and platinum group element concentrations: loess and the upper continental crust. Geochem. Geophys. Geosyst. 2, 2001GC000172 (2001).

    Article  Google Scholar 

  7. Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. Non-chondritic meteorites from asteroidal bodies. Rev. Mineral. Geochem. 36, 4-1–4-195 (1998).

    Google Scholar 

  8. Barrat, J.-Af et al. A 4,565-My-old andesite from an extinct chondritic protoplanet. Proc. Natl Acad. Sci. USA 118, e2026129118 (2021).

    Article  Google Scholar 

  9. Bischoff, A. et al. Trachyandesitic volcanism in the early Solar System. Proc. Natl Acad. Sci. USA 111, 12689–12692 (2014).

    Article  Google Scholar 

  10. Hahn, T. M. Jr, Lunning, N. G., McSween, H. Y. Jr, Bodnar, R. J. & Taylor, L. A. Dacite formation on Vesta: partial melting of the eucritic crust. Meteorit. Planet. Sci. 52, 1173–1196 (2017).

    Article  Google Scholar 

  11. Agee, C. A., Habermann, M. A. & Ziegler, K. Northwest Africa 11575: unique ungrouped trachyandesite achondrite. 49th Lunar and Planetary Science Conference contrib. 2083 abstr. 2226 (2018).

  12. Chekol, T. A., Kobayashi, K., Yokoyama, T., Sakaguchi, C. & Nakamura, E. Timescale of magma differentiation from basalt to andesite beneath Hekla Volcano, Iceland: constraints from U-series disequilibria in lavas from the last quarter millennium flow. Geochim. Cosmochim. Acta 75, 256–283 (2011).

    Article  Google Scholar 

  13. Day, J. M. D. et al. Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies. Geochim. Cosmochim. Acta 81, 94–128 (2012).

    Article  Google Scholar 

  14. Gardner-Vandy, K. G., Lauretta, D. S. & McCoy, T. J. A petrologic thermodynamic and experimental study of brachinites: partial melt residues of an R chondrite-like precursor. Geochim. Cosmochim. Acta 122, 36–57 (2013).

    Article  Google Scholar 

  15. Collinet, M. & Grove, T. L. Formation of primitive achondrites by partial melting of alkali-undepleted planetesimals in the inner solar system. Geochim. Cosmochim. Acta 277, 358–376 (2020).

    Article  Google Scholar 

  16. Gattacceca, J., McCubbin, F. M., Bouvier, A. & Grossman, J. N. The meteoritical bulletin, no. 109. Meteorit. Planet. Sci. 56, 1626–1630 (2020).

  17. Kitts, K. & Lodders, K. Survey and evaluation of eucrite bulk compositions. Meteorit. Planet. Sci. 33, A197–A213 (1998).

    Article  Google Scholar 

  18. Keil, K. Angrites, a small but diverse group of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chem. der Erdie 72, 191–218 (2012).

    Article  Google Scholar 

  19. Day, J. M. D., Walker, R. J., Qin, L. & Rumble, D. III Late accretion as a natural consequence of planetary growth. Nat. Geosci. 5, 614–617 (2012).

    Article  Google Scholar 

  20. Riches, A. J. V. et al. Rhenium–osmium isotope and highly-siderophile-element abundance systematics of angrite meteorites. Earth Planet. Sci. Lett. 353–354, 208–218 (2012).

    Article  Google Scholar 

  21. Shirey, S. B. & Walker, R. J. The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Annu. Rev. Earth Planet. Sci. 26, 423–500 (1998).

    Article  Google Scholar 

  22. Hyde, B. C. et al. Characterization of weathering and heterogeneous mineral phase distribution in brachinite Northwest Africa 4872. Meteorit. Planet. Sci. 49, 1141–1156 (2014).

    Article  Google Scholar 

  23. Putrika, K. Clinopyroxene + liquid equilibria to 100 kbar and 2450 K. Contrib. Mineral. Petrol. 135, 151–163 (1999).

    Article  Google Scholar 

  24. Day, J. M. D. Metal grains in lunar rocks as indicators of igneous and impact processes. Meteorit. Planet. Sci. 55, 1793–1807 (2020).

    Article  Google Scholar 

  25. Yoshino, T., Walter, M. J. & Katsura, T. Core formation in planetesimals triggered by permeable flow. Nature 422, 154–157 (2003).

    Article  Google Scholar 

  26. Ghanbarzadeh, S., Hesse, M. A. & Prodanovic, M. Percolative core formation in planetesimals enabled by hysteresis in metal connectivity. Proc. Natl Acad. Sci. USA 114, 13406–13411 (2017).

    Article  Google Scholar 

  27. Yamaguchi, A. et al. Experimental evidence of fast transport of trace elements in planetary basaltic crusts by high temperature metamorphism. Earth Planet. Sci. Lett. 368, 101–109 (2013).

    Article  Google Scholar 

  28. Puchtel, I. S., Walker, R. J., James, O. B. & Kring, D. A. Osmium isotope and highly siderophile element systematics of lunar impact melt breccias: implications for the late accretion history of the Moon and Earth. Geochim. Cosmochim. Acta 72, 3022–3042 (2008).

    Article  Google Scholar 

  29. Lunning, N. G. et al. Partial melting of oxidized planetesimals: an experimental study to test the formation of oligoclase-rich achondrites Graves Nunatak 06128 and 06129. Geochim. Cosmochim. Acta 214, 73–85 (2017).

    Article  Google Scholar 

  30. Touboul, M., Sprung, P., Aciego, S. M., Bourdon, B. & Kleine, T. Hf–W chronology of the eucrite parent body. Geochim. Cosmochim. Acta 156, 106–121 (2015).

    Article  Google Scholar 

  31. Kruijer, T. S. et al. Hf–W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites. Geochim. Cosmochim. Acta 99, 287–304 (2012).

    Article  Google Scholar 

  32. Day, J. M. D. et al. Differentiation processes in FeO-rich asteroids revealed by the achondrite Lewis Cliff 88763. Meteorit. Planet. Sci. 50, 1750–1766 (2015).

    Article  Google Scholar 

  33. Day, J. M. D., Corder, C. A., Assayag, N. & Cartigny, P. Ferrous oxide-rich asteroid achondrites. Geochim. Cosmochim. Acta 266, 544–567 (2019).

    Article  Google Scholar 

  34. Gardner-Vandy, K. G. et al. The Tafassasset primitive achondrite: insights into initial stages of planetary differentiation. Geochim. Cosmochim. Acta 85, 142–159 (2012).

    Article  Google Scholar 

  35. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. & Zanettin, B. A chemical classification of volcanic rocks based on the total alkali–silica diagram. J. Petrol. 27, 745–750 (1986).

    Article  Google Scholar 

  36. Warren, P. H. & Gessler, N. Northwest Africa 2191, an extraordinarily evolved eucrite. 51st Lunar and Planetary Science Conference abstr. 2446 (2020).

  37. McDonough, W. F. & Sun, S. S. The composition of Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  38. Tait, K. T. & Day, J. M. D. Chondritic late accretion to Mars and the nature of shergottite reservoirs. Earth Planet. Sci. Lett. 494, 99–108 (2018).

    Article  Google Scholar 

  39. Cohen, A. S. & Waters, F. G. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionization mass spectrometry. Anal. Chim. Acta 332, 269–275 (1996).

    Article  Google Scholar 

  40. Birck, J. L., Roy Barman, M. & Capmas, F. Re–Os isotopic measurements at the femtomole level in natural samples. Geostand. Newsl. 20, 19–27 (1997).

    Article  Google Scholar 

  41. Day, J. M. D., Brandon, A. D. & Walker, R. J. Highly siderophile elements in Earth, Mars, the Moon, and asteroids. Rev. Mineral. Geochem. 81, 161–238 (2016).

    Article  Google Scholar 

  42. Rahib, R. R. et al. Mantle source to near-surface emplacement of enriched and intermediate poikilitic shergottites in Mars. Geochim. Cosmochim. Acta 266, 463–496 (2019).

    Article  Google Scholar 

  43. McIntosh, E. C., Day, J. M. D., Liu, Y. & Jiskoot, C. Examining the compositions of impactors striking the Moon using Apollo impact melt coats and anorthositic regolith breccia meteorites. Geochim. Cosmochim. Acta 274, 192–210 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the NASA Emerging Worlds programme award (NNX16AR95G) to J.M.D.D.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by J.M.D.D. and K.G.G.-V. K.G.G.-V. acquired the piece of EC 002 used in this study. Bulk rock analyses were performed by J.M.D.D. EPMA analyses were supervised by A.U. Petrography and LA-ICP-MS analyses were performed by R.W.N. The initial manuscript was written by R.W.N. and edited by other co-authors. Funding was acquired by J.M.D.D.

Corresponding author

Correspondence to Robert W. Nicklas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Max Collinet, Maxwell Thiemens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5 and Figs. 1–7.

Supplementary Data 1

All in situ major-element data.

Supplementary Data 2

All in situ trace-element data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicklas, R.W., Day, J.M.D., Gardner-Vandy, K.G. et al. Early silicic magmatism on a differentiated asteroid. Nat. Geosci. 15, 696–699 (2022). https://doi.org/10.1038/s41561-022-00996-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00996-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing