Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Astronomically controlled aridity in the Sahara since at least 11 million years ago

Abstract

The Sahara is the largest hot desert on Earth. Yet the timing of its inception and its response to climatic forcing is debated, leading to uncertainty over the causes and consequences of regional aridity. Here we present detailed records of terrestrial inputs from Africa to North Atlantic deep-sea sediments, documenting a long and sustained history of astronomically paced oscillations between a humid and arid Sahara from over 11 million years ago. We show that intervals of strong dust emissions from the heart of the continent predate both the intensification of Northern Hemisphere glaciation and the oldest land-based evidence for a Saharan desert by millions of years. We find no simple long-term gradational transition towards an increasingly arid climate state in northern Africa, suggesting that aridity was not the primary driver of gradual Neogene expansion of African savannah C4 grasslands. Instead, insolation-driven wet–dry shifts in Saharan climate were common over the past 11 Myr, and we identify three distinct stages in the sensitivity of this relationship. Our data provide context for evolutionary outcomes on Africa; for example, we find that astronomically paced arid intervals predate the oldest fossil evidence of hominid bipedalism by at least 4 Myr.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: African hydroclimate compared with global change over the past 11 Myr.
Fig. 2: Relationship between lithophile element ratios and hydrogen and carbon isotopic compositions of plant waxes at Site 659.
Fig. 3: Strong response of African hydroclimate to astronomical forcing recorded at Site 659.
Fig. 4: Radiogenic isotope signature of Site 659 lithic fraction compared with values of PSAs reveals consistent source.

Data availability

The data presented in this study are available in the Zenodo repository (https://doi.org/10.5281/zenodo.6594643).

References

  1. Thomas, N. & Nigam, S. Twentieth-century climate change over Africa: seasonal hydroclimate trends and Sahara desert expansion. J. Clim. 31, 3349–3370 (2018).

    Article  Google Scholar 

  2. Maley J. in The Sahara and the Nile (eds Martin A. J. Williams and Hugues Faure) 63–86 (Balkema, 1980).

  3. deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).

    Article  Google Scholar 

  4. Trauth, M. H., Larrasoaña, J. C. & Mudelsee, M. Trends, rhythms and events in Plio-Pleistocene African climate. Quat. Sci. Rev. 28, 399–411 (2009).

    Article  Google Scholar 

  5. Muhs, D. R. et al. The antiquity of the Sahara desert: new evidence from the mineralogy and geochemistry of Pliocene paleosols on the Canary Islands, Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 533, 109245 (2019).

    Article  Google Scholar 

  6. Schuster, M. et al. The age of the Sahara desert. Science 311, 821 (2006).

    Article  Google Scholar 

  7. Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the late Miocene. Nature 513, 401–404 (2014).

    Article  Google Scholar 

  8. Kroepelin, S. & Swezey, C. S. Revisiting the age of the Sahara desert. Science 312, 1138–1139 (2006).

    Article  Google Scholar 

  9. McQuarrie, N. & van Hinsbergen, D. J. J. Retrodeforming the Arabia–Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41, 315–318 (2013).

    Article  Google Scholar 

  10. Allen, M. B. & Armstrong, H. A. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 265, 52–58 (2008).

    Article  Google Scholar 

  11. Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994).

    Article  Google Scholar 

  12. Tjallingii, R. et al. Coherent high- and low-latitude control of the northwest African hydrological balance. Nat. Geosci. 1, 670–675 (2008).

    Article  Google Scholar 

  13. Skonieczny, C. et al. African humid periods triggered the reactivation of a large river system in western Sahara. Nat. Commun. 6, 8751 (2015).

    Article  Google Scholar 

  14. Ruddiman. W. F. et al. (eds) Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (ODP, 1989).

  15. Skonieczny, C. et al. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 5, eaav1887 (2019).

    Article  Google Scholar 

  16. McGee, D., deMenocal, P. B., Winckler, G., Stuut, J. B. W. & Bradtmiller, L. I. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett. 371–372, 163–176 (2013).

    Article  Google Scholar 

  17. Mulitza, S. et al. Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466, 226–228 (2010).

    Article  Google Scholar 

  18. Drake, N. A., Blench, R. M., Armitage, S. J., Bristow, C. S. & White, K. H. Ancient watercourses and biogeography of the Sahara explain the peopling of the desert. Proc. Natl Acad. Sci. USA 108, 458–462 (2011).

    Article  Google Scholar 

  19. Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of green Sahara periods and their role in hominin evolution. PLoS ONE 8, e76514 (2013).

    Article  Google Scholar 

  20. Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the green Sahara. Sci. Adv. 3, e1601503 (2017).

    Article  Google Scholar 

  21. Mori, F. The earliest Saharan rock-engravings. Antiquity 48, 87–92 (1974).

    Article  Google Scholar 

  22. McGee, D., Broecker, W. S. & Winckler, G. Gustiness: the driver of glacial dustiness? Quat. Sci. Rev. 29, 2340–2350 (2010).

    Article  Google Scholar 

  23. Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    Article  Google Scholar 

  24. Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).

    Article  Google Scholar 

  25. Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. USA 114, 12888–12893 (2017).

    Article  Google Scholar 

  26. Moussa, A. et al. Lake Chad sedimentation and environments during the late Miocene and Pliocene: new evidence from mineralogy and chemistry of the Bol core sediments. J. Afr. Earth. Sci. 118, 192–204 (2016).

    Article  Google Scholar 

  27. Washington, R., Todd, M., Middleton, N. J. & Goudie, A. S. Dust‐storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann. Assoc. Am. Geographers 93, 297–313 (2003).

    Article  Google Scholar 

  28. Schepanski, K., Tegen, I. & Macke, A. Comparison of satellite based observations of Saharan dust source areas. Remote Sens. Environ. 123, 90–97 (2012).

    Article  Google Scholar 

  29. Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article  Google Scholar 

  30. Sarnthein, M. et al. in Geology of the Northwest African Continental Margin (eds von Rad, U. et al.) 545–604 (Springer, 1982).

  31. Jewell, A. M. et al. Three North African dust source areas and their geochemical fingerprint. Earth Planet. Sci. Lett. 554, 116645 (2021).

    Article  Google Scholar 

  32. Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

    Article  Google Scholar 

  33. Feakins, S. J. et al. Northeast African vegetation change over 12 m.y. Geology 41, 295–298 (2013).

    Article  Google Scholar 

  34. Pagani, M., Freeman, K. H. & Arthur, M. A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285, 876–879 (1999).

    Article  Google Scholar 

  35. Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 2023–2031 (2006).

    Article  Google Scholar 

  36. Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & deMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).

    Article  Google Scholar 

  37. Hoetzel, S., Dupont, L., Schefuß, E., Rommerskirchen, F. & Wefer, G. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nat. Geosci. 6, 1027–1030 (2013).

    Article  Google Scholar 

  38. Naafs, B. D. A. et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth Planet. Sci. Lett. 317–318, 8–19 (2012).

    Article  Google Scholar 

  39. Kuechler, R. R., Dupont, L. M. & Schefuß, E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Clim. Past 14, 73–84 (2018).

    Article  Google Scholar 

  40. Kuechler, R. R., Schefuß, E., Beckmann, B., Dupont, L. & Wefer, G. NW African hydrology and vegetation during the last glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. Quat. Sci. Rev. 82, 56–67 (2013).

    Article  Google Scholar 

  41. Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).

    Article  Google Scholar 

  42. Faith, J. T., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362, 938–941 (2018).

    Article  Google Scholar 

  43. Potts, R. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13 (2013).

    Article  Google Scholar 

  44. Maslin, M. A. et al. East African climate pulses and early human evolution. Quat. Sci. Rev. 101, 1–17 (2014).

    Article  Google Scholar 

  45. Zollikofer, C. P. E. et al. Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature 434, 755 (2005).

    Article  Google Scholar 

  46. DiMaggio, E. N. et al. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia. Science 347, 1355–1359 (2015).

    Article  Google Scholar 

  47. Bobe, R. & Wood, B. Estimating origination times from the early hominin fossil record. Evol. Anthropol. 31, 92–102 (2022).

  48. Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. Proc. Natl Acad. Sci. USA 113, 201521267 (2016).

    Article  Google Scholar 

  49. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  Google Scholar 

  50. Kumar, A. et al. Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean. Earth Planet. Sci. Lett. 487, 94–105 (2018).

    Article  Google Scholar 

  51. Gama, C. et al. Seasonal patterns of Saharan dust over Cape Verde—a combined approach using observations and modelling. Tellus B 67, 24410 (2015).

    Article  Google Scholar 

  52. Patey, M. D., Achterberg, E. P., Rijkenberg, M. J. & Pearce, R. Aerosol time-series measurements over the tropical Northeast Atlantic Ocean: dust sources, elemental composition and mineralogy. Mar. Chem. 174, 103–119 (2015).

    Article  Google Scholar 

  53. Skonieczny, C. et al. A three-year time series of mineral dust deposits on the West African margin: sedimentological and geochemical signatures and implications for interpretation of marine paleo-dust records. Earth Planet. Sci. Lett. 364, 145–156 (2013).

    Article  Google Scholar 

  54. Ratmeyer, V., Fischer, G. & Wefer, G. Lithogenic particle fluxes and grain size distributions in the deep ocean off northwest Africa: mplications for seasonal changes of aeolian dust input and downward transport. Deep Sea Res. 1 46, 1289–1337 (1999).

    Article  Google Scholar 

  55. Bory, A. et al. Atmospheric and oceanic dust fluxes in the northeastern tropical Atlantic Ocean: how close a coupling? Ann. Geophys. 20, 2067–2076 (2002).

    Article  Google Scholar 

  56. Chiapello, I. et al. Origins of African dust transported over the northeastern tropical Atlantic. J. Geophys. Res. Atmos. 102, 13701–13709 (1997).

    Article  Google Scholar 

  57. Stuut, J.-B. et al. Provenance of present-day eolian dust collected off NW Africa. J. Geophys. Res. Atmos. 110, D04202 (2005).

    Article  Google Scholar 

  58. Schepanski, K., Tegen, I. & Macke, A. Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos. Chem. Phys. 9, 1173–1189 (2009).

    Article  Google Scholar 

  59. Caquineau, S., Gaudichet, A., Gomes, L. & Legrand, M. Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions. J. Geophys. Res. Atmos. 107, 4251 (2002).

    Article  Google Scholar 

  60. Formenti, P. et al. Regional variability of the composition of mineral dust from western Africa: results from the AMMA SOP0/DABEX and DODO field campaigns. J. Geophys. Res. Atmos. 113, D00C13 (2008).

    Article  Google Scholar 

  61. Friese, C. A., van Hateren, J. A., Vogt, C., Fischer, G. & Stuut, J.-B. W. Seasonal provenance changes in present-day Saharan dust collected in and off Mauritania. Atmos. Chem. Phys. 17, 10163 (2017).

    Article  Google Scholar 

  62. McConnell, C. L. et al. Seasonal variations of the physical and optical characteristics of Saharan dust: results from the Dust Outflow and Deposition to the Ocean (DODO) experiment. J. Geophys. Res. Atmos. 113, D14S05 (2008).

    Article  Google Scholar 

  63. Salvador, P. et al. Composition and origin of PM10 in Cape Verde: characterization of long-range transport episodes. Atmos. Environ. 127, 326–339 (2016).

    Article  Google Scholar 

  64. Skonieczny, C. et al. The 7-13 March 2006 major Saharan outbreak: multiproxy characterization of mineral dust deposited on the West African margin. J. Geophys. Res. Atmos. 116, D18210 (2011).

    Article  Google Scholar 

  65. Zhao, W., Balsam, W., Williams, E., Long, X. & Ji, J. Sr–Nd–Hf isotopic fingerprinting of transatlantic dust derived from North Africa. Earth Planet. Sci. Lett. 486, 23–31 (2018).

    Article  Google Scholar 

  66. Holz, C., Stuut, J.-B. W. & Henrich, R. Terrigenous sedimentation processes along the continental margin off NW Africa: implications from grain-size analysis of seabed sediments. Sedimentology 51, 1145–1154 (2004).

    Article  Google Scholar 

  67. Matthewson, A. P., Shimmield, G. B., Kroon, D. & Fallick, A. E. A 300 kyr high‐resolution aridity record of the North African continent. Paleoceanography 10, 677–692 (1995).

    Article  Google Scholar 

  68. Wilkens, R. H. et al. Revisiting Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy ODP leg 154 from 0 to 5 Ma. Clim. Past 13, 779–793 (2017).

    Article  Google Scholar 

  69. Manivit, H. in Proceedings of the Ocean Drilling Program: Scientific Results Vol. 108 (eds Ruddiman, W. et al.) 35–69 (ODP, 1989).

  70. Raffi, I. et al. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 25, 3113–3137 (2006).

    Article  Google Scholar 

  71. Ogg, J. G. in The Geologic Time Scale (eds Gradstein, F. M. et al.) 85–113 (Elsevier, 2012).

  72. Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).

    Article  Google Scholar 

  73. Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  74. Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).

    Article  Google Scholar 

  75. Schulz, M. & Mudelsee, M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 28, 421–426 (2002).

    Article  Google Scholar 

  76. Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).

    Article  Google Scholar 

  77. Weltje, G. J. et al. in Micro-XRF Studies of Sediment Cores (eds Croudace, I. W. & Rothwell, R. G.) 507–534 (Springer, 2015).

  78. Bloemsma, M. R. Development of a Modelling Framework for Core Data Integration using XRF Scanning (Delft University of Technology, 2015).

  79. Gac, J.-Y. & Kane, A. Le fleuve Sénégal: I. Bilan hydrologique et flux continentaux de matières particulaires à l’embouchure. Sci. Geol. Mem. 31, 99–130 (1986).

    Google Scholar 

  80. Scheuvens, D., Schütz, L., Kandler, K., Ebert, M. & Weinbruch, S. Bulk composition of northern African dust and its source sediments—a compilation. Earth Sci. Rev. 116, 170–194 (2013).

    Article  Google Scholar 

  81. Orange, D. & Gac, J.-Y. Bilan géochimique des apports atmosphériques en domaines sahélien et soudano-guinéen d’Afrique de l’Ouest (bassins supérieurs du Sénégal et de la Gambie). Géodynamique 5, 51–65 (1990).

    Google Scholar 

  82. Orange, D., Gac, J.-Y. & Diallo, M. I. Geochemical assessment of atmospheric deposition including Harmattan dust in continental West Africa. In Tracers in Hydrology: Proc. Yokohama Symposium (ed. Peters, N. E., Hoehn, E., Leibundgut, C., Tase, N. & Walling, D.E.) 303–312 (IAHS, 1993).

  83. Guieu, C. & Thomas, A. J. in The Impact of Desert Dust Across the Mediterranean (eds Guersoni, S. & Chester, R.) 207–216 (Springer, 1996).

  84. Criado, C. & Dorta, P. An unusual ‘blood rain’ over the Canary Islands (Spain). The storm of January 1999. J. Arid. Environ. 55, 765–783 (2003).

    Article  Google Scholar 

  85. Viana, M., Querol, X., Alastuey, A., Cuevas, E. & Rodrı́guez, S. Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmos. Environ. 36, 5861–5875 (2002).

    Article  Google Scholar 

  86. Formenti, P., Elbert, W., Maenhaut, W., Haywood, J. & Andreae, M. O. Chemical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000. J. Geophys. Res. Atmos. 108, 8576 (2003).

    Article  Google Scholar 

  87. Linke, C. et al. Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study. Atmos. Chem. Phys. 6, 3315–3323 (2006).

    Article  Google Scholar 

  88. Khiri, F., Ezaidi, A. & Kabbachi, K. Dust deposits in Souss–Massa basin, south-west of Morocco: granulometrical, mineralogical and geochemical characterisation. J. Afr. Earth. Sci. 39, 459–464 (2004).

    Article  Google Scholar 

  89. Moreno, T. et al. Geochemical variations in aeolian mineral particles from the Sahara–Sahel Dust Corridor. Chemosphere 65, 261–270 (2006).

    Article  Google Scholar 

  90. Mounkaila, M. Spectral and Mineralogical Properties of Potential Dust Sources on a Transect from the Bodélé Depresseion (Central Sahara) to the Lake Chad in the Sahel (Univ. Hohenheim, 2006).

  91. Herrmann, L., Jahn, R. & Maurer, T. Mineral dust around the Sahara—from source to sink. A review with emphasis on contributions of the German soil science community in the last twenty years. J. Plant Nutr. Soil Sci. 173, 811–821 (2010).

    Article  Google Scholar 

  92. Tiedemann, R. Acht Millionen Jahre Klimageschichte von Nordwest Afrika und Paläo-Ozeanographie des angrenzenden Atlantiks: Hochauflösende Zeitreihen von ODP-Sites 658–661 (Christian-Albrechts-Universität, 1991).

  93. Cohen, A. S., O’Nions, R. K., Siegenthaler, R. & Griffin, W. L. Chronology of the pressure–temperature history recorded by a granulite terrain. Contrib. Mineral. Petrol. 98, 303–311 (1988).

    Article  Google Scholar 

  94. Pin, C. & Zalduegui, J. S. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal. Chim. Acta 339, 79–89 (1997).

    Article  Google Scholar 

  95. Vance, D. & Thirlwell, M. An assessment of mass discrimination in MC-ICPMS using Nd isotopes. Chem. Geol. 185, 227–240 (2002).

    Article  Google Scholar 

  96. Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).

    Article  Google Scholar 

  97. Jacobsen, S. B. & Wasserburg, G. J. Sm–Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155 (1980).

    Article  Google Scholar 

  98. Dietze, E. et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sediment. Geol. 243–244, 169–180 (2011).

    Google Scholar 

  99. Wood, S. N. Generalized Additive Models: An iIntroduction with R (CRC Press, 2017).

  100. Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).

    Google Scholar 

  101. Castillo, S. et al. Trace element variation in size-fractionated African desert dusts. J. Arid. Environ. 72, 1034–1045 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded through ERC advanced grant CDREG no. 322998 (D.J.B.) and the Royal Society Challenge Grant CHG\R1\170054 (P.A.W.) and Wolfson Merit Award WM140011 (P.A.W.). Additional funding came from University of Southampton’s GCRF strategic development fund grant 519016 (P.A.W. and A.J.C.), advanced ERC grant T-GRES ref. 340923 (B.D.A.N. and R.D.P.) and a Royal Society Tata University Research Fellowship (B.D.A.N.). We thank the Natural Environment Research Council for partial funding of the mass spectrometry facilities at the University of Bristol (contract no. R8/H10/63). Financial support was also received from the Deutsche Forschungsgemeinschaft (DFG) (U.R. and T.W.), including project 242225091 (T.W).

This research used samples provided by (I)ODP, which was sponsored by the US National Science Foundation and participating countries under management of Joint Oceanographic Institutions, Inc. We thank W. Hale, H. Kuhlman and A. Wülbers of the Bremen Core Repository and R. K. James, A. McCombie and C. Evans for laboratory assistance, A. Calder for discrete XRF analysis and V. Lukies for assistance with XRF core scanning. Biostratigraphic information was provided by J. Backman, and S. Mulitza supplied the geochemical endmember unmixing code. We thank D. McGee, J. Tierney, T. Ezard, C. Gamble, A. Pike, T. Herbert, K. Grant, S. Feakins, E. Rohling and S. Mulitza for discussions and feedback that helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.J.C., P.A.W., C.P.O. and D.J.B. designed the study. A.J.C. and T.W. performed the XRF measurements and developed the age model. B.D.A.N. generated the n-alkane δ13C data, and M.J.C. and A.J.C. generated the radiogenic isotope data. A.J.C. performed the sediment endmember unmixing. A.J.C. and P.A.W. led the analysis and interpretation of results with input from all authors. A.J.C., P.A.W., D.J.B. and C.P.O. led the writing of the manuscript with contributions from all other authors.

Corresponding author

Correspondence to Anya J. Crocker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks David McGee and Jessica Tierney for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison between hydroclimate proxies measured at Site 659.

a, b, c, Bulk sediment [Al + Fe]/[Si + K + Ti] (orange), δD signatures of C31 n-alkanes (pale blue, 1σ error bars)39,40, ln[Zr/Rb] (green, pale colours indicate low element counts). d, e, f, Generalised additive model (GAM)99 fit of Site 659 [Al + Fe]/[Si + K + Ti] data shown by black line with grey shaded confidence band (2 standard error). Black crosses indicate original data points with resampled data points used in Kendall’s tau-b correlation tests indicated by red circles (see Supplementary Information). a, d, late Pleistocene, b, e, late Pliocene, c, f, early Pliocene.

Extended Data Fig. 2 Coherency spectra comparing our data from Site 659 to published dust and hydroclimate records from the same and nearby sites.

Green dashed line marks 90% Monte Carlo false-alarm level. a & b, Coherency between the dust % estimates from Site 659 of ref. 11 and our ln[Ca/Fe] (a) and dust flux (b) estimates over the last 8 Myr. c, Coherency between our estimated dust fluxes and those of ref. 15 from nearby site MD03-2705 over the last 240 kyr. d, e, f, Coherency between our [Al+Fe]/[Si+K + Ti] values and C31 n-alkane δD values from Site 659 from refs. 39,40 for three time slices in the Quaternary (d) and Pliocene (e, f).

Extended Data Fig. 3 Comparison between methods for calculating dust fluxes to marine sediments over the last 250 kyr.

a, Red: modal dust flux estimates from Site 659 based on a geochemical end-member unmixing approach, with orange lines marking ± 1 standard deviation of 500 realizations. Blue: Dust flux estimates from site MD03-2705 (directly adjacent to Site 659) calculated by 230Th normalization13 with error bars indicating ± 1 standard deviation. b, Generalized Additive Model99 fit of Site 659 median dust fluxes shown by black line with grey shaded confidence band (2 standard error). Black crosses indicate original data points with resampled data points used in Kendall’s tau-b correlation tests indicated by red circles (see Supplementary Information).

Extended Data Fig. 4 Box and whisker plot illustrating co-variation in sediment colour and geochemistry at Site 659.

Top: [Al + Fe]/[Si + K + Ti], bottom: ln[Zr/Rb]. Data are plotted from “light” and “dark” sediment layers (as defined by the method described in the Supplementary Information) for each of the three time stages (Stage I: 11.15 – 6.7 Ma, Stage II: 5.75 – 3.5 Ma, Stage III: 2.25 – 0 Ma). Box indicates interquartile range (IQR) with line marking median value, outliers (>1.5 IQR from median) marked with circles and whiskers drawn to the maximum/minimum values excluding outliers. Mann-Whitney-Wilcoxon tests were used to test the null hypothesis that samples from light and dark layers have identical continuous distributions with equal medians for each time interval. All resulting p-values were <0.001, giving >99.9% confidence that the differences between light and dark layers are significant. See Supplementary Information for further discussion.

Extended Data Fig. 5 Wavelet analysis of Site 659 geochemical records.

Comparison between continuous wavelet power spectra of calibrated ln[Ca/Fe] (top) and [Al + Fe]/[Si + K + Ti] (bottom) data on the astronomically-tuned age model (left) and an untuned age model based solely on biostratigraphic and magnetostratigraphic datums14,69 (right). Thick black contours designate the 5% significance level against red noise and the cone of influence is shown as a lighter shade, where edge effects may cause distortion. Data were detrended and smoothed (5-point moving average) prior to the wavelet analyses. Separate spectra were also generated for the older and younger sections of the full record to reduce the impact of temporal changes in cycle amplitude on the detected frequencies. Analyses were performed and figures generated using the Matlab code of ref. 74. See Supplementary Information for further discussion.

Extended Data Fig. 6 REDFIT spectral analysis75 of Site 659 geochemical records.

Top: ln[Ca/Fe] ratios, middle: calibrated [Al + Fe]/[Si + K + Ti] ratios, bottom: median dust flux values. Data are divided into the three time stages discussed in the text. Left: Stage III (2.25–0 Ma), centre: Stage II (5.75–3.5 Ma), right: Stage I (11.15–6.9 Ma). Green curves mark the false-alarm level at the 95% confidence level, red curves indicate AR(1) red noise models. Orange lines and numbers indicate the frequencies equivalent to periods (in kyr) of major astronomical cycles (precession, obliquity and eccentricity). Analysis performed and figures created using PAST software100. See Supplementary Information for further discussion.

Extended Data Fig. 7 Running statistical analysis of Site 659 geochemical data, comparing 1 Myr data bins.

a, Mann-Whitney-Wilcoxon test log(p) values to detect shifts in central tendency (see Supplementary Information). Low values indicate extremely low probabilities that the two data bins have the same central tendency. b, Estimated difference in location between the two data bins divided by the interquartile range of the complete data set, with 95% confidence interval plotted. Note that [Al + Fe]/[Si + K + Ti] is plotted on an inverted axis. c, Ansari-Bradley test log(p) values to detect shifts in dispersion. Low values indicate extremely low probabilities that the two data bins have the same dispersion. d, Ratio of scales between the two data bins, with 95% confidence interval plotted. Orange: calibrated [Al + Fe]/[Si + K + Ti], green: ln[Zr/Rb] (with XRF counts <300 removed), red: median dust flux (g cm−2 kyr−1). Grey shading indicates intervals of greatest change in the geochemical time series revealed by statistical analyses.

Extended Data Fig. 8 Cross-plots of strontium and neodymium isotopic signature of lithic fraction of Site 659 sediments.

Data coloured by: a, the proportion of the lithic fraction attributed to dust by end-member unmixing ([dust]/[dust+riverine]), b, co-registered ln[Zr/Rb] values. Red marks samples dominated by dust/coarse grains, blue marks samples dominated by riverine inputs/fine grains. c, Data coloured by age, where stage I (pink) is the oldest (>6.9 Ma), stage III (blue) is the youngest (<2.25 Ma) and grey indicates samples from the transition between stages II and III (3.5–2.25 Ma). Individual samples are marked by crosses and mean values for each age range are shown by circles, with error bars indicating 1 standard deviation.

Extended Data Fig. 9 Grain size distributions of the end-members calculated from the lithic fraction of ODP Site 659.

Grain size derived end-member 1 (EM1) in blue and grain size derived end-member 2 (EM2) in red compared to: a, Modern dust samples recorded offshore NW Africa from ref. 57 in grey. b, As (a) but with just the most proximal measurements to Site 659 (M41/1 D4, centered at 19.73°N, 17.91°W) plotted. c, The grain size end members of ref. 12 from site GeoB7920-2 (20.75°N, 18.58°W). Yellow and orange dashed lines indicate the end members attributed to fine and coarse dust respectively, with the riverine end member shown in green. d, All Site 659 lithogenic grain size distributions (black).

Extended Data Fig. 10 Comparisons between grain size and geochemical proxies at Site 659.

a & b, [Al + Fe]/[Si + K + Ti] ratios of the coarse and fine fractions of (a) 12 sediment samples from Site 659 sieved at 10 μm and analysed by discrete XRF analysis with sample ages are listed along the top and (b) desert surface soil and aeolian dusts from four locations in the Sahara-Sahel dust corridor, analysed by inductively coupled plasma mass spectrometry and grouped into <12 μm and >12 μm size fractions, from ref. 101. CB: Chad Basin, HM: Hoggar Massif, WS: Western Sahara, HAR: Harmattan. c & d, The proportion of lithogenic grain size derived end-member 1 (grain size EM1, attributed to fine riverine inputs) plotted against the sediment geochemical ratios c [Al + Fe]/[Si + K + Ti] and d ln[Zr/Rb]. Data points are coloured by sample age, where the youngest samples are in blue and the oldest in orange.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crocker, A.J., Naafs, B.D.A., Westerhold, T. et al. Astronomically controlled aridity in the Sahara since at least 11 million years ago. Nat. Geosci. 15, 671–676 (2022). https://doi.org/10.1038/s41561-022-00990-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00990-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing