Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Late Miocene cooling coupled to carbon dioxide with Pleistocene-like climate sensitivity

Abstract

Earth’s climate cooled markedly during the late Miocene from 12 to 5 million years ago, with far-reaching consequences for global ecosystems. However, the driving forces of these changes remain controversial. A major obstacle to progress is the uncertainty over the role played by greenhouse gas radiative forcing. Here we present boron isotope compositions for planktic foraminifera, which record carbon dioxide change for the interval of most rapid cooling, the late Miocene cooling event between 7 and 5 Ma. Our record suggests that CO2 declined by some 100 ppm over this two-million-year-long interval to a minimum at approximately 5.9 Ma. Having accounted for non-CO2 greenhouse gasses and slow climate feedbacks, we estimate global mean surface temperature change for a doubling of CO2—equilibrium climate sensitivity—to be 3.9 °C (1.8–6.7 °C at 95% confidence) on the basis of comparison of our record of radiative forcing from CO2 with a record of global mean surface temperature change. We conclude that changes in CO2 and climate were closely coupled during the latest Miocene and that equilibrium climate sensitivity was within range of estimates for the late Pleistocene, other intervals of the Cenozoic and the twenty-first century as presented by the Intergovernmental Panel on Climate Change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neogene and late Miocene climate changes.
Fig. 2: Records of late Miocene climate change.
Fig. 3: Latest Miocene climate sensitivity regression and key climates sensitivity studies throughout the past 70 myr.

Similar content being viewed by others

Data availability

The experimental data are available at https://doi.org/10.5258/SOTON/D2258.

References

  1. Arrhenius, P. S. On the influence of carbonic acid in the air upon the temperature of the ground. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41, 237–276 (1896).

    Article  Google Scholar 

  2. Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).

    Article  Google Scholar 

  3. Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016).

    Article  Google Scholar 

  4. Knutti, R., Rugenstein, M. A. A. & Hegerl, G. C. Beyond equilibrium climate sensitivity. Nat. Geosci. 10, 727–736 (2017).

    Article  Google Scholar 

  5. Goodwin, P. et al. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).

    Article  Google Scholar 

  6. Caballero, R. & Huber, M. State-dependent climate sensitivity in past warm climates and its implications for future climate projections. Proc. Natl. Acad. Sci. USA 110, 14162–14167 (2013).

    Article  Google Scholar 

  7. Köhler, P., de Boer, B., von der Heydt, A. S., Stap, L. B. & van de Wal, R. S. W. On the state dependency of the equilibrium climate sensitivity during the last 5 million years. Clim. Past 11, 1801–1823 (2015).

    Article  Google Scholar 

  8. Köhler, P. et al. A state-dependent quantification of climate sensitivity based on paleodata of the last 2.1 million years. Paleoceanography 32, 1102–1114 (2017).

    Article  Google Scholar 

  9. Rohling, E. J. et al. Making sense of palaeoclimate sensitivity. Nature 491, 683–691 (2012).

    Article  Google Scholar 

  10. Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).

    Article  Google Scholar 

  11. Stap, L. B., Köhler, P. & Lohmann, G. Including the efficacy of land ice changes in deriving climate sensitivity from paleodata. Earth System Dynamics 10, 333–345 (2019).

    Article  Google Scholar 

  12. Sosdian, S. M. et al. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy. Earth Planet. Sci. Lett. 498, 362–376 (2018).

    Article  Google Scholar 

  13. Pagani, M., Arthur, M. A. & Freeman, K. H. Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14, 273–292 (1999).

    Article  Google Scholar 

  14. Pagani, M., Freeman, K. H. & Arthur, M. A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285, 876–879 (1999).

    Article  Google Scholar 

  15. LaRiviere, J. P. et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97–100 (2012).

    Article  Google Scholar 

  16. Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    Article  Google Scholar 

  17. Larsen, H. C. et al. Seven million years of glaciation in Greenland. Science 264, 952–955 (1994).

    Article  Google Scholar 

  18. Carrapa, B., Clementz, M. & Feng, R. Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the late Miocene cooling. Proc. Natl. Acad. Sci. USA 116, 9747–9752 (2019).

    Article  Google Scholar 

  19. Feakins, S. J. et al. Miocene C4 grassland expansion as recorded by the Indus Fan. Paleoceanogr. Paleoclimatol. 6, e2020PA003856 (2020).

    Google Scholar 

  20. Tauxe, L. & Feakins, S. J. A re-assessment of the chronostratigraphy of late Miocene C3–C4 transitions. Paleoceanogr. Paleoclimatol. 35, e2020PA003857 (2020).

    Article  Google Scholar 

  21. Holbourn, A. E. et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1584 (2018).

    Article  Google Scholar 

  22. Drury, A. J., John, C. M. & Shevenell, A. E. Evaluating climatic response to external radiative forcing during the late Miocene to early Pliocene: new perspectives from eastern equatorial Pacific (IODP U1338) and North Atlantic (ODP 982) locations. Paleoceanography 31, 167–184 (2016).

    Article  Google Scholar 

  23. Drury, A. J. et al. Deciphering the state of the late Miocene to early Pliocene equatorial Pacific. Paleoceanogr. Paleoclimatol. 33, 246–263 (2018).

    Article  Google Scholar 

  24. Anagnostou, E. et al. Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nat. Commun. 11, 4436 (2020).

    Article  Google Scholar 

  25. Badger, M. et al. Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels. Clim. Past 15, 539–554 (2019).

    Article  Google Scholar 

  26. Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M. & DeConto, R. A 40-million-year history of atmospheric CO2. Philos. Trans. R. Soc. A 371, 20130096 (2013).

    Article  Google Scholar 

  27. Tanner, T., Hernández‐Almeida, I., Drury, A. J., Guitián, J. & Stoll, H. Decreasing atmospheric CO2 during the late Miocene cooling. Paleoceanogr. Paleoclimatol. 35, e2020PA003925 (2020).

    Article  Google Scholar 

  28. Stoll, H. M. et al. Upregulation of phytoplankton carbon concentrating mechanisms during low CO2 glacial periods and implications for the phytoplankton pCO2 proxy. Quat. Sci. Rev. 208, 1–20 (2019).

    Article  Google Scholar 

  29. Cui, Y., Schubert, B. A. & Jahren, A. H. A 23 m.y. record of low atmospheric CO2. Geology 48, 888–892 (2020).

    Article  Google Scholar 

  30. Hain, M. P., Foster, G. L. & Chalk, T. Robust Constraints on Past CO2 Climate Forcing From the Boron Isotope Proxy. Paleoceanogr. Paleoclimatol. 33, 1099–1115 (2018).

    Article  Google Scholar 

  31. Greenop, R. et al. A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera. Clim. Past 13, 149–170 (2017).

    Article  Google Scholar 

  32. Greenop, R., Foster, G., A. Wilson, P. & Lear, C. Middle Miocene climate instability associated with high amplitude CO2 variability. Paleoceanography 29, 845–853 (2014).

    Article  Google Scholar 

  33. Raitzsch, M. & Hönisch, B. Cenozoic boron isotope variations in benthic foraminifers. Geology 41, 591–594 (2013).

    Article  Google Scholar 

  34. Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

    Article  Google Scholar 

  35. Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).

    Article  Google Scholar 

  36. Bolton, C. T. & Stoll, H. M. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562 (2013).

    Article  Google Scholar 

  37. Witkowski, C. R., Weijers, J. W. H., Blais, B., Schouten, S. & Damsté, J. S. S. Molecular fossils from phytoplankton reveal secular pCO2 trend over the Phanerozoic. Sci. Adv. 4, eaat4556 (2018).

    Article  Google Scholar 

  38. Super, J. R. et al. North Atlantic temperature and pCO2 coupling in the early–middle Miocene. Geology 46, 519–522 (2018).

    Article  Google Scholar 

  39. Lomax, B. H., Lake, J. A., Leng, M. J. & Jardine, P. E. An experimental evaluation of the use of Δ13C as a proxy for palaeoatmospheric CO2. Geochim. Cosmochim. Acta 247, 162–174 (2019).

    Article  Google Scholar 

  40. Drury, A. J. et al. Late Miocene climate and time scale reconciliation: accurate orbital calibration from a deep-sea perspective. Earth Planet. Sci. Lett. 475, 254–266 (2017).

    Article  Google Scholar 

  41. Bierman, P. R., Shakun, J. D., Corbett, L. B., Zimmerman, S. R. & Rood, D. H. A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years. Nature 540, 256–260 (2016).

    Article  Google Scholar 

  42. Pérez, L. F., Nielsen, T., Knutz, P. C., Kuijpers, A. & Damm, V. Large-scale evolution of the central-east Greenland margin: new insights to the North Atlantic glaciation history. Glob. Planet. Change 163, 141–157 (2018).

    Article  Google Scholar 

  43. Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).

    Article  Google Scholar 

  44. Müller, P. J., Kirst, G., Ruhland, G., von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index UK37′ based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998).

    Article  Google Scholar 

  45. Sutton, R. T., Dong, B. & Gregory, J. M. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett. 34, L02701 (2007).

    Article  Google Scholar 

  46. Haywood, A. M. et al. The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Climate 16, 2095–2123 (2020).

    Google Scholar 

  47. Farnsworth, A. et al. Climate sensitivity on geological timescales controlled by non-linear feedbacks and ocean circulation. Geophys. Res. Lett. 46, 9880–9889 (2020).

    Article  Google Scholar 

  48. Dyez, K. A., Hönisch, B. & Schmidt, G. A. Early Pleistocene obliquity-scale pCO2 variability at 1.5 million years ago. Paleoceanogr. Paleoclimatol. 33, 1270–1291 (2018).

    Article  Google Scholar 

  49. Heydt, A. S., von der Köhler, P., van de Wal, R. S. W. & Dijkstra, H. A. On the state dependency of fast feedback processes in (paleo) climate sensitivity. Geophys. Res. Lett. 41, 6484–6492 (2014).

    Article  Google Scholar 

  50. Martínez-Botí, M. A. et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518, 49–54 (2015).

    Article  Google Scholar 

  51. Snyder, C. W. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).

    Article  Google Scholar 

  52. Jansen, E., Sjøholm, J., Bleil, U. & Erichsen, J. A. in Geological History of the Polar Oceans: Arctic Versus Antarctic (eds Bleil, U. & Thiede, J.) 677–705 (Springer, 1990); https://doi.org/10.1007/978-94-009-2029-3_35

  53. Bradshaw, C. D. et al. The relative roles of CO2 and palaeogeography in determining late Miocene climate: results from a terrestrial model–data comparison. Climate 8, 715–786 (2012).

    Google Scholar 

  54. Bradshaw, C. D., Lunt, D. J., Flecker, R. & Davies-Barnard, T. Disentangling the roles of late Miocene palaeogeography and vegetation—implications for climate sensitivity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 417, 17–34 (2015).

    Article  Google Scholar 

  55. Knorr, G., Butzin, M., Micheels, A. & Lohmann, G. A warm Miocene climate at low atmospheric CO2 levels. Geophys. Res. Lett. 38, L200701 (2011).

    Article  Google Scholar 

  56. Pound, M. J., Haywood, A. M., Salzmann, U. & Riding, J. B. Global vegetation dynamics and latitudinal temperature gradients during the mid to late Miocene (15.97–5.33Ma). Earth Sci. Rev. 112, 1–22 (2012).

    Article  Google Scholar 

  57. Capella, W. et al. Mediterranean isolation preconditioning the Earth system for late Miocene climate cooling. Sci. Rep. 9, 3795 (2019).

    Article  Google Scholar 

  58. Köhler, P. et al. What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat. Sci. Rev. 29, 129–145 (2010).

    Article  Google Scholar 

  59. Hansen, J., Sato, M., Russell, G. & Kharecha, P. Climate sensitivity, sea level and atmospheric carbon dioxide. Philos. Trans. R. Soc. A 371, 117 (2013).

    Article  Google Scholar 

  60. Hopcroft, P. O. et al. Polar amplification of Pliocene climate by elevated trace gas radiative forcing. Proc. Natl. Acad. Sci. USA 117, 23401–23407 (2020).

    Article  Google Scholar 

  61. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    Article  Google Scholar 

  62. Badger, M. P. S., Schmidt, D. N., Mackensen, A. & Pancost, R. D. High-resolution alkenone palaeobarometry indicates relatively stable pCO2 during the Pliocene (3.3–2.8 Ma). Philos. Trans. R. Soc. A 371, 20130094 (2013).

    Article  Google Scholar 

  63. Freeman, K. H. & Hayes, J. M. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob. Biogeochem. Cycles 6, 185–198 (1992).

    Article  Google Scholar 

  64. Seki, O. et al. Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett. 292, 201–211 (2010).

    Article  Google Scholar 

  65. Zhang, Y. G., Pagani, M., Henderiks, J. & Ren, H. A long history of equatorial deep-water upwelling in the Pacific Ocean. Earth Planet. Sci. Lett. 467, 1–9 (2017).

    Article  Google Scholar 

  66. Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005).

    Article  Google Scholar 

  67. Chalk, T. B. et al. Causes of ice age intensification across the mid-Pleistocene transition. Proc. Natl Acad. Sci. USA 114, 13114–13119 (2017).

    Article  Google Scholar 

  68. Bartoli, G., Hönisch, B. & Zeebe, R. E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography 26, PA4213 (2011).

    Article  Google Scholar 

  69. Foster, G. L., Lear, C. H. & Rae, J. W. The evolution of pCO2, ice volume and climate during the middle Miocene. Paleoceanography 341, 243–254 (2012).

    Google Scholar 

  70. Raitzsch, M. et al. Atmospheric carbon dioxide variations across the middle Miocene climate transition. Climate 17, 703–719 (2021).

    Google Scholar 

  71. Stap, L. B. et al. CO2 over the past 5 million years: continuous simulation and new δ11B-based proxy data. Earth Planet. Sci. Lett. 439, 1–10 (2016).

    Article  Google Scholar 

  72. Hönisch, B., Hemming, N. G., Archer, D., Siddall, M. & McManus, J. F. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324, 1551–1554 (2009).

    Article  Google Scholar 

  73. Da, J., Zhang, Y. G., Wang, H., Balsam, W. & Ji, J. An early Pleistocene atmospheric CO2 record based on pedogenic carbonate from the Chinese loess deposits. Earth Planet. Sci. Lett. 426, 69–75 (2015).

    Article  Google Scholar 

  74. Da, J., Zhang, Y. G., Li, G., Meng, X. & Ji, J. Low CO2 levels of the entire Pleistocene epoch. Nat. Commun. 10, 4342 (2019).

    Article  Google Scholar 

  75. Ekart, D. D., Cerling, T. E., Montanez, I. P. & Tabor, N. J. A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. Am. J. Sci. 299, 805–827 (1999).

    Article  Google Scholar 

  76. Ji, S. et al. A symmetrical CO2 peak and asymmetrical climate change during the middle Miocene. Earth Planet. Sci. Lett. 499, 134–144 (2018).

    Article  Google Scholar 

  77. Retallack, G. J. Refining a pedogenic-carbonate CO2 paleobarometer to quantify a middle Miocene greenhouse spike. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 57–65 (2009).

    Article  Google Scholar 

  78. Kürschner, W. M., van der Burgh, J., Visscher, H. & Dilcher, D. L. Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Mar. Micropaleontol. 27, 299–312 (1996).

    Article  Google Scholar 

  79. Kürschner, W. M., Kvaček, Z. & Dilcher, D. L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 105, 449–453 (2008).

    Article  Google Scholar 

  80. Retallack, G. J. Greenhouse crises of the past 300 million years. Geol. Soc. Am. Bull. 121, 1441–1455 (2009).

    Article  Google Scholar 

  81. Franks, P. J., Royer, D. L., Beerling, D. J., Van de Water, P. K., Cantrill, D. J., Barbour, M. M. & Berry, J. A. New constraints on atmospheric CO2 concentration for the Phanerozoic. Geophys. Res. Lett. 41, 4685–4694 (2014).

    Article  Google Scholar 

  82. Royer, D. L., Wing, S. L., Beerling, D. J., Jolley, D. W., Koch, P. L., Hickey, L. J. & Berner, R. A. Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science 292, 2310–2313 (2001).

    Article  Google Scholar 

  83. Steinthorsdottir, M., Jardine, P. E. & Rember, W. C. Near-future pCO2 during the hot Miocene climatic optimum. Paleoceanogr. and Paleoclimatol. 36, e2020PA003900 (2021).

    Article  Google Scholar 

  84. Bickert, T., Haug, G. H. & Tiedemann, R. Late Neogene benthic stable isotope record of Ocean Drilling Program Site 999: implications for Caribbean paleoceanography, organic carbon burial, and the Messinian salinity crisis. Paleoceanography 19, PA1023 (2004).

    Article  Google Scholar 

  85. Shackleton, N. J., Hall, M. A. & Boersma, A. Oxygen and carbon isotope data from Leg-74 foraminifers. Initial Rep. Deep Sea Drill. Proj. 74, 599–612 (1984).

    Google Scholar 

  86. Quade, J. & Cerling, T. E. Expansion of C4 grasses in the late Miocene of northern Pakistan: evidence from stable isotopes in paleosols. Palaeogeogr. Palaeoclimatol. Palaeoecol. 115, 91–116 (1995).

    Article  Google Scholar 

  87. Lawrence, K. T., Liu, Z. & Herbert, T. D. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science 312, 79–83 (2006).

    Article  Google Scholar 

  88. Liu, Z. & Herbert, T. D. High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature 427, 720–723 (2004).

    Article  Google Scholar 

  89. Liu, J. et al. Eastern equatorial Pacific cold tongue evolution since the late Miocene linked to extratropical climate. Sci. Adv. 5, eaau6060 (2019).

  90. Steinke, S., Groeneveld, J., Johnstone, H. & Rendle-Bühring, R. East Asian summer monsoon weakening after 7.5 Ma: evidence from combined planktonic foraminifera Mg/Ca and δ18O (ODP Site 1146; northern South China Sea). Palaeogeogr. Palaeoclimatol. Palaeoecol. 289, 33–43 (2010).

    Article  Google Scholar 

  91. Lederer, W. & Seibold, H. simex: SIMEX- And MCSIMEX-Algorithm for Measurement Error Models. R package version 1.8.https://CRAN.R-project.org/package=simex. (2019)

  92. Cox, P. M., Huntingford, C. & Williamson, M. S. Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature 553, 319–322 (2018).

    Article  Google Scholar 

  93. Chylek, P. & Lohmann, U. Aerosol radiative forcing and climate sensitivity deduced from the Last Glacial Maximum to Holocene transition. Geophys. Res. Lett. 35, L04804 (2008).

    Google Scholar 

  94. Hargreaves, J. C., Annan, J. D., Yoshimori, M. & Abe-Ouchi, A. Can the Last Glacial Maximum constrain climate sensitivity? Geophys. Res. Lett. 39, L24702 (2012).

    Article  Google Scholar 

  95. Holden, P. B., Edwards, N. R., Oliver, K. I. C., Lenton, T. M. & Wilkinson, R. D. A probabilistic calibration of climate sensitivity and terrestrial carbon change in GENIE-1. Clim. Dyn. 35, 785–806 (2010).

    Article  Google Scholar 

  96. Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat. Geosci. 1, 735–743 (2008).

    Article  Google Scholar 

  97. Schmittner, A. et al. Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science 334, 1385–1388 (2011).

    Article  Google Scholar 

  98. Schneider von Deimling, T., Held, H., Ganopolski, A. & Rahmstorf, S. Climate sensitivity estimated from ensemble simulations of glacial climate. Clim. Dyn. 27, 149–163 (2006).

    Article  Google Scholar 

  99. Lea, D. W. The 100 000-yr cycle in tropical SST, greenhouse forcing, and climate sensitivity. J. Clim. 17, 2170–2179 (2004).

    Article  Google Scholar 

  100. Hargreaves, J. C. & Annan, J. D. Could the Pliocene constrain the equilibrium climate sensitivity? Clim. Past 12, 1591–1599 (2016).

    Article  Google Scholar 

  101. Pagani, M. et al. The role of carbon dioxide during the onset of Antarctic glaciation. Science 334, 1261–1264 (2011).

    Article  Google Scholar 

  102. Lunt, D. J. et al. Earth system sensitivity inferred from Pliocene modelling and data. Nat. Geosci. 3, 60–64 (2010).

    Article  Google Scholar 

  103. van de Wal, R. S. W., de Boer, B., Lourens, L. J., Köhler, P. & Bintanja, R. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years. Clim. Past 7, 1459–1469 (2011).

    Article  Google Scholar 

  104. Inglis, G. N. et al. Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene. Climate 16, 1953–1968 (2020).

    Google Scholar 

  105. Royer, D. L., Berner, R. A. & Park, J. Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature 446, 530–532 (2007).

    Article  Google Scholar 

  106. Skinner, L. A long view on climate sensitivity. Science 337, 917–919 (2012).

    Article  Google Scholar 

  107. Cramwinckel, M. J. et al. Synchronous tropical and polar temperature evolution in the Eocene. Nature 559, 382–386 (2018).

    Article  Google Scholar 

  108. Takahashi, T., Sutherland, S. C., & Kozyr, A. Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed During 1957-2010 (Version 2010). ORNL/CDIAC-159, NDP-088(V2010). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, https://cdiac.ess-dive.lbl.gov/ftp/ndp088/NDP-088.pdf (2010).

  109. Foster, G. L. Seawater pH, pCO2 and [CO32-] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271, 254–266 (2008).

  110. Zeeden, C. et al. Revised Miocene splice, astronomical tuning and calcareous plankton biochronology of ODP Site 926 between 5 and 14.4 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 369, 430–451 (2013).

    Article  Google Scholar 

  111. Wilkens, R. H. et al. Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154 from 0 to 5 Ma. Clim. Past 13, 779–793 (2017).

    Article  Google Scholar 

  112. Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4 (2003).

  113. Foster, G. L. et al. Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chem. Geol. 358, 1–14 (2013).

    Article  Google Scholar 

  114. Henehan, M. J. et al. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet. Sci. Lett. 364, 111–122 (2013).

    Article  Google Scholar 

  115. Gutjahr, M. et al. Sub-permil interlaboratory consistency for solution-based boron isotope analyses on marine carbonates. Geostand. Geoanal. Res. 45, 59–75 (2021).

    Article  Google Scholar 

  116. Rae, J. W. B., Foster, G. L., Schmidt, D. N. & Elliott, T. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet. Sci. Lett. 302, 403–413 (2011).

    Article  Google Scholar 

  117. Gattuso, J.-P., Epitalon, J.-M., Lavigne, H. & Orr, J. seacarb: Seawater Carbonate Chemistry. R package version 3.2.16. https://CRAN.R-project.org/package=seacarb (2021)

  118. Millero, F. J. Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta 59, 661–677 (1995).

    Article  Google Scholar 

  119. Dickson, A. G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res. Part A 37, 755–766 (1990).

    Article  Google Scholar 

  120. Klochko, K., Kaufman, A. J., Yao, W., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248, 276–285 (2006).

    Article  Google Scholar 

  121. Anand, P., Elderfield, H. & Conte, M. H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography 18, 28–31 (2003).

    Article  Google Scholar 

  122. Dekens, P. S., Lea, D. W., Pak, D. K. & Spero, H. J. Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation. Geochem. Geophys. Geosystems 3, 1022 (2002).

  123. Lear, C. H. et al. Neogene ice volume and ocean temperatures: insights from infaunal foraminiferal Mg/Ca paleothermometry. Paleoceanography 30, 2015PA002833 (2015).

    Article  Google Scholar 

  124. Hasiuk, F. J. & Lohmann, K. C. Application of calcite Mg partitioning functions to the reconstruction of paleocean Mg/Ca. Geochim. Cosmochim. Acta 74, 6751–6763 (2010).

    Article  Google Scholar 

  125. Evans, D. & Müller, W. Deep time foraminifera Mg/Ca paleothermometry: nonlinear correction for secular change in seawater Mg/Ca. Paleoceanography 27, PA4205 (2012).

    Article  Google Scholar 

  126. Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).

    Article  Google Scholar 

  127. Foster, G. L. & Rae, J. W. B. Reconstructing ocean pH with boron isotopes in foraminifera. Annu. Rev. Earth Planet. Sci. 44, 207–237 (2016).

    Article  Google Scholar 

  128. Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Gulf Professional, 2001).

  129. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  130. Rousselle, G., Beltran, C., Sicre, M.-A., Raffi, I. & De Rafélis, M. Changes in sea-surface conditions in the equatorial Pacific during the middle Miocene–Pliocene as inferred from coccolith geochemistry. Earth Planet. Sci. Lett. 361, 412–421 (2013).

    Article  Google Scholar 

  131. Rayner, N. A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  132. Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569–573 (2020).

    Article  Google Scholar 

  133. Jia, G., Chen, F. & Peng, P. Sea surface temperature differences between the western equatorial Pacific and northern South China Sea since the Pliocene and their paleoclimatic implications. Geophys. Res. Lett. 35 (2008).

  134. Sikes, E. L., Howard, W. R., Neil, H. L. & Volkman, J. K. Glacial–interglacial sea surface temperature changes across the subtropical front east of New Zealand based on alkenone unsaturation ratios and foraminiferal assemblages. Paleoceanography 17, 1012 (2002).

    Article  Google Scholar 

  135. Martínez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde, R. & Haug, G. H. Subpolar link to the emergence of the modern equatorial Pacific cold tongue. Science 328, 1550–1553 (2010).

    Article  Google Scholar 

  136. Herbert, T. D. et al. Collapse of the California current during glacial maxima linked to climate change on land. Science 293, 71–76 (2001).

    Article  Google Scholar 

  137. Paillard, D., Labeyrie, L. & Yiou, P. AnalySeries (2005).

  138. Schlitzer, R. Ocean Data View (2018); https://odv.awi.de/

  139. Diester-Haass, L., Billups, K. & Emeis, K. C. In search of the late Miocene–early Pliocene “biogenic bloom” in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088). Paleoceanography 20, PA4001 (2005).

    Article  Google Scholar 

  140. Tian, J. et al. Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific–Atlantic comparison: High resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337. Earth Planet. Sci. Lett. 499, 185–196 (2018).

Download references

Acknowledgements

We are grateful to the staff at the Bremen core repository and the ΙODP for providing sample material. We also thank M. Spencer, B. Hambach, J. A. Milton, M. Cooper, and A. Michalik as well as the rest of the ‘B-team’ for laboratory assistance. This work was supported by Natural Environment Research Council grants NE/P011381/1 to G.L.F., P.A.W. and T.B.C. and NE/L002531/1 to R.M.B., the Leverhulme Trust through support to T.B.C. and the Royal Society (Challenge Grant to P.A.W. and A.J.C.) and Wolfson Merit awards to P.A.W. and G.L.F.

Author information

Authors and Affiliations

Authors

Contributions

R.M.B. and T.B.C. provided primary data based on their laboratory work. G.L.F., T.B.C. and P.A.W. conceived the project. R.M.B. produced the first draft of the manuscript, and all authors contributed to the final text. R.M.B. performed all statistical data analysis and compiled the data with input from A.J.C. on chronology.

Corresponding author

Correspondence to Rachel M. Brown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Sarah Feakins, Laura Haynes and Baerbel Hoenisch for their contribution to the peer review of this work. Primary Handling Editor: Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Map of mean annual ΔCO2 and SST labelled with site locations.

a) Map of mean annual modern ΔCO2 (parts per million, ppm) between surface ocean and the atmosphere with sample site ODP 926 (3° 43’16.49” N and 42° 54’47.83” W, and water depth of 3598 m). Data from ref. 60. b) Map of the sites used to generate the ΔSST stack with mean annual modern SST from Levitus World Ocean Atlas database. See supplementary Table 3 for locations and depths of ΔSST sample sites. Figures constructed and data visualised in Ocean Data View138.

Extended Data Fig. 2 Neogene of T. trilobus δ11B.

Data collected from ODP 926, ODP 1000 (red square), ODP 761 (red diamond) and ODP 872 (red triangle). Error bars represent 2sd.

Extended Data Fig. 3 Sensitivity of atmospheric carbon dioxide and ΔFCO2 estimates to δ11B for seawater.

Reconstructed CO2 (left axis, blue lines) and ΔFCO2 (right axis, orange lines) for time intervals before (6.5 Ma), during (5.9 Ma) and after (5.0 Ma) Late Miocene temperature minimum using modern DIC (Top) at ODP 926 (2027 (±250) µmol kg−1, ref. 108) and Neogene DIC reconstructions (Bottom, ref. 10).

Extended Data Fig. 4 δ13C and δ18O of benthic foraminifera at ODP 926.

top) Stable oxygen isotopes from C.wuellestorfi from ODP926 (red: this study, blue: ref. 109). (bottom) Stable carbon isotopes from C.wuellestorfi (red: this study; blue: ref. 120, yellow: ref. 139).

Extended Data Fig. 5 Age model evaluation for ODP 926.

Previously published high resolution stable carbon isotopes from benthic foraminifera from ODP 926 (bold blue)120, ODP 982 (red)22, IODP U1337 (green)140 and IODP U1338 (pale blue)22.

Extended Data Fig. 6 All ΔSST records using in ΔSST stack.

Alkenone derived ΔSST records used in ΔSST stack. Recalibrated using BAYSPLINE method from ref. 43.

Extended Data Fig. 7 Jackknifing ΔSST stack.

Each ΔSST record is sequentially removed from the stack to ensure that no one record has undue weight on the stack.

Extended Data Fig. 8 Comparison of ΔGMAST stack from ref. 51 with ΔGMAST stack from sample sites.

a) Map of the sites used to generate the ΔGMAST stack with mean annual modern SST from ref. 60 for the Late Miocene and last 100kyr stacks. See Supplementary Table 3 for locations of ΔSST sample sites and references. Figures constructed and data visualised in Ocean Data View138 with modern SST data from Levitis Ocean Atlas Data base. b) ΔGMAST stacked record using the same sites as used in the late Miocene Stack for the last 100 kyr (dark blue error band, 68% of Monte Carlo simulations; light blue error band, 95% of Monte Carlo simulations) and from ref. 51 (dark red error band, 1sd; light red error band, 2sd). Change in LGM ΔGMAST for recent proxy compilation (black dashed line)132.

Extended Data Fig. 9 Μaximum constraints on climate sensitivity.

(Top) Forced alignment between ΔFCO2 (orange) and ΔGMAST stack (blue). Light blue/orange and dark blue/orange represent 95% and 68% uncertainty as calculated in Monte Carlo simulations described in methods for ΔFCO2 and ΔGMAST respectively. (Bottom) SIMEX regression91 of aligned ΔFCO2 and ΔGMAST. Error bars represent 2sd error. Black line represents SIMEX regression. Dashed blue line represent error on SIMEX regression.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9.

Supplementary Table 1

Reports information relevant to site location, sampling resolution and references to sources of original temperature measurements for late Miocene SST stack.

Supplementary Table 2

Data for stable isotopes (δ11B, δ13C and δ18O), elemental ratios (Al/Ca, Mg/Ca and B/Ca) and pH and CO2 estimates based on δ11B.

Supplementary Table 3

Compilation of key equilibrium climate sensitivity studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, R.M., Chalk, T.B., Crocker, A.J. et al. Late Miocene cooling coupled to carbon dioxide with Pleistocene-like climate sensitivity. Nat. Geosci. 15, 664–670 (2022). https://doi.org/10.1038/s41561-022-00982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00982-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology