Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sustained mid-Pliocene warmth led to deep water formation in the North Pacific

Abstract

Geologic intervals of sustained warmth such as the mid-Pliocene Warm Period can inform our understanding of future climate change, including the long-term consequences of oceanic uptake of anthropogenic carbon. Here we generate carbon isotope records and synthesize existing records to reconstruct the position of water masses and determine circulation patterns in the deep Pacific Ocean. We show that the mid-depth carbon isotope gradient in the North Pacific was reversed during the mid-Pliocene compared with today, which implies water flowed from north to south and deep water probably formed in the subarctic North Pacific Deep Water. An isotopically enabled climate model that simulates this North Pacific Deep Water reproduces a similar carbon isotope pattern. Modelled levels of dissolved inorganic carbon content in the North Pacific decrease slightly, although the amount of carbon stored in the ocean actually increases by 1.6% relative to modern due to an increase in dissolved inorganic carbon in the surface ocean. Although the modelled Pliocene ocean maintains a carbon budget similar to the present, the change in deep ocean circulation configuration causes pronounced downstream changes in biogeochemistry.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Reconstructed benthic δ13C and modelled anomalies for the mid-Pliocene Warm Period.
Fig. 2: Observed benthic δ13C and modelled zonal-mean anomalies for the mid-Pliocene Warm Period.
Fig. 3: Benthic isotope records of Prob-stack and Site 882 sediment records CaCO3 MAR and opal MAR.

Data availability

The stable isotope data generated here for Shatsky Rise and those compiled for the spatial analyses are available at figshare (DOI: 10.6084/m9.figshare.20233857) and will also be available on Pangaea.de.

Code availability

The CESM 1.2.2.1 code used to run the climate simulations is available from https://svn-ccsm-models.cgd.ucar.edu/cesm1/release_tags/cesm1_2_2_1. The code modifications made to CESM 1.2.2.1 to include carbon isotopes following ref. 38 are available from https://github.com/nburls/FordEtAl2022_CISOmods. Figures with coastal outlines (for example, Figs. 1 and 2 and Extended Data Figs. 1 and 2) were created in Matlab with the M_maps package71.

References

  1. Pachauri, R. K., M. R. Allen, V. R. Barros, and J. Broome (2014), Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,

  2. Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002).

    Article  Google Scholar 

  3. Warren, B. A. Why is no deep water formed in the North Pacific? J. Mar. Res. 41, 327–347 (1983).

    Article  Google Scholar 

  4. Burls, N. J. et al. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Sci. Adv. 3, e1700156 (2017).

    Article  Google Scholar 

  5. Kwiek, P. & Ravelo, A. C. Pacific Ocean intermediate and deep water circulation during the Pliocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 191–217 (1999).

    Article  Google Scholar 

  6. McKinley, C. C., Thomas, D. J., LeVay, L. J. & Rolewicz, Z. Nd isotopic structure of the Pacific Ocean 40–10 Ma, and evidence for the reorganization of deep North Pacific Ocean circulation between 36 and 25 Ma. Earth Planet. Sci. Lett. 521, 139–149 (2019).

    Article  Google Scholar 

  7. Rae, J. W. et al. Deep water formation in the North Pacific and deglacial CO2 rise. Paleoceanography 29, 645–667 (2014).

    Article  Google Scholar 

  8. Thomas, D. J. Evidence for deep-water production in the North Pacific Ocean during the early Cenozoic warm interval. Nature 430, 65–68 (2004).

    Article  Google Scholar 

  9. Haywood, A. M. et al. A return to large-scale features of Pliocene climate: the Pliocene Model Intercomparison Project phase 2. Preprint at Copernicus https://doi.org/10.5194/cp-2019-145 (2020).

  10. de la Vega, E. et al. Atmospheric CO2 during the mid-Piacenzian Warm Period and the M2 glaciation. Sci. Rep. 10, 11002 (2020).

    Article  Google Scholar 

  11. McClymont, E. L. et al. Lessons from a high-CO2 world: an ocean view from ~3 million years ago. Clim. Past 16, 1599–1615 (2020).

    Article  Google Scholar 

  12. Brierley, C., Burls, N., Ravelo, C. & Fedorov, A. Pliocene warmth and gradients. Nat. Geosci. 8, 419–420 (2015).

    Article  Google Scholar 

  13. Burls, N. J. & Fedorov, A. V. What controls the mean east–west sea surface temperature gradient in the equatorial Pacific: the role of cloud albedo. J. Clim. 27, 2757–2778 (2014).

    Article  Google Scholar 

  14. Fedorov, A. V., Burls, N.J., Lawrence, K. T. and Peterson, L. C. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nat. Geosci. https://doi.org/10.1038/ngeo2577 (2015).

  15. Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. USA 28, 12888–12893 (2017).

    Article  Google Scholar 

  16. Lyle, M. & Baldauf, J. Biogenic sediment regimes in the Neogene equatorial Pacific, IODP Site U1338: burial, production, and diatom community. Palaeogeogr. Palaeoclimatol. Palaeocol. 433, 106–128 (2015).

    Article  Google Scholar 

  17. Shankle, M. G. et al. Pliocene decoupling of equatorial Pacific temperature and pH gradients. Nature 598, 457–461 (2021).

    Article  Google Scholar 

  18. Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2004PA001021 (2005).

  19. Kroopnick, P. M. The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Res. A 32, 57–84 (1985).

    Article  Google Scholar 

  20. Schmittner, A. et al. Calibration of the carbon isotope composition (δ13C) of benthic foraminifera. Paleoceanogr. Paleoclimatol. 32, 512–530 (2017).

    Article  Google Scholar 

  21. Gu, S. et al. Assessing the potential capability of reconstructing glacial Atlantic water masses and AMOC using multiple proxies in CESM. Earth Planet. Sci. Lett. 541, 116294 (2020).

    Article  Google Scholar 

  22. Lozier, M. S. Deconstructing the conveyor belt. Science 328, 1507–1511 (2010).

    Article  Google Scholar 

  23. Jian, Z. et al. Pliocene–Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea. Palaeogeogr. Palaeoclimatol. 193, 425–442 (2003).

    Article  Google Scholar 

  24. Mix, A. et al. Benthic foraminifer stable isotope recond from Site 849 (0–5 Ma): local and global climate changes. In Proc. Ocean Drilling Program, Scientific Results 138 (eds Pisias, N. G. et al.), 371–412 (1995).

  25. Tian, J., Wang, P., Cheng, X. & Li, Q. Astronomically tuned Plio–Pleistocene benthic δ18O record from South China Sea and Atlantic–Pacific comparison. Earth Planet. Sci. Lett. 203, 1015–1029 (2002).

    Article  Google Scholar 

  26. Whitman, J. M. & Berger, W. H. Pliocene–Pleistocene carbon isotope record, Site 586, Ontong Java Plateau. Mar. Micropaleontol. 130, 333–348 (1993).

    Google Scholar 

  27. Caballero-Gill, R. P., Herbert, T. D. & Dowsett, H. J. 100‐kyr paced climate change in the Pliocene Warm Period, Southwest Pacific. Paleoceanogr. Paleoclimatol. 34, 524–545 (2019).

    Article  Google Scholar 

  28. Karas, C. et al. Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow. Nat. Geosci. 2, 434–438 (2009).

    Article  Google Scholar 

  29. McClymont, E. L. et al. Pliocene‐Pleistocene evolution of sea surface and intermediate water temperatures from the southwest Pacific. Paleoceanography 31, 895–913 (2016).

    Article  Google Scholar 

  30. Tiedemann, R., Sturm, A., Steph, S., Lund, S. P. & Stoner, A. J. S. Astronomically calibrated timescales from 6 to 2.5 Ma and benthic isotope stratigraphies, Sites 1236, 1237, 1239, and 1241. In Proc. Ocean Drilling Program, Scientific Results 202 (eds Tiedman, R. et al.), 1–69 (2007).

  31. Venti, N. L. & Billups, K. Stable-isotope stratigraphy of the Pliocene–Pleistocene climate transition in the northwestern subtropical Pacific. Palaeogeogr. Palaeoclimatol. 326-328, 54–65 (2012).

    Article  Google Scholar 

  32. Shackleton, N. J., Hall, M. A. & Pate, D. Pliocene stable isotope stratigraphy of Site 846. In Proc. Ocean Drilling Program, Scientific Results 138 (eds Pisias, N. G. et al.), 337–355 (1995).

  33. Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).

    Article  Google Scholar 

  34. Lam R. A. et al. Pliocene to Earliest Pleistocene (5–2.5 Ma) Reconstruction of the Kuroshio Current Extension Reveals a Dynamic Current. https://doi.org/10.1029/2021PA004318 (2021).

  35. Venti, N. L., Billups, K. & Herbert, T. D. Paleoproductivity in the northwestern Pacific Ocean during the Pliocene-Pleistocene climate transition (3.0–1.8 Ma) https://doi.org/10.1002/2016PA002955 (2017).

  36. Haywood, A. M. et al. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Climate 9, 191–209 (2013).

    Google Scholar 

  37. Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem. Cycles https://doi.org/10.1029/2004GB002220 (2004).

  38. Jahn, A. et al. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1). Geosci. Model Dev. 8, 2419–2434 (2015).

    Article  Google Scholar 

  39. Gruber, N., Sabine, C. L., Feely, R. A., Key, R. M. & Lee, K. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199 (2019).

    Article  Google Scholar 

  40. Lawrence, K. T. et al. Time-transgressive North Atlantic productivity changes upon Northern Hemisphere glaciation. Paleoceanogr. Paleoclimatol. 28, 740–751 (2013).

    Article  Google Scholar 

  41. Haug, G., Sigman, D., Tiedemann, R., Pedersen, T. & Sarnthein, M. Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401, 779–782 (1999).

    Article  Google Scholar 

  42. Woodard, S. C. et al. Antarctic role in Northern Hemisphere glaciation. Science 346, 847–851 (2014).

    Article  Google Scholar 

  43. Patterson, M. O. et al. A Southwest Pacific perspective on long-term global trends in Pliocene–Pleistocene stable isotope records. Paleoceanogr. Paleoclimatol. 33, 825–839 (2018).

    Article  Google Scholar 

  44. Woodhouse, A. et al. Adaptive ecological niche migration does not negate extinction susceptibility. Sci. Rep. 11, 15411 (2021).

    Article  Google Scholar 

  45. Ahn, S., Khider, D., Lisiecki, L. E. & Lawrence, C. E. A probabilistic Pliocene–Pleistocene stack of benthic δ18O using a profile hidden Markov model. Dyn. Stat. Clim. Syst. 2, 91–16 (2017).

    Google Scholar 

  46. Butcher, S., King, T. & Zalewski, L. Apocrita—High Performance Computing Cluster for Queen Mary University of London (2017).

  47. Lin, L., Khider, D., Lisiecki, L. E. & Lawrence, C. E. Probabilistic sequence alignment of stratigraphic records. Paleoceanogr. Paleoclimatol. 29, 976–989 (2014).

    Article  Google Scholar 

  48. Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoclimatol. 20, PA1003 (2005).

    Google Scholar 

  49. Duplessy, J. C. et al. 13C record of benthic foraminifera in the last interglacial ocean: implications for the carbon cycle and the global deep water circulation. Quat. Res. https://doi.org/10.1016/0033-5894(84)90099-1 (1984).

  50. Shields, C. A. et al. The low-resolution CCSM4. J. Clim. 25, 3993–4014 (2012).

    Article  Google Scholar 

  51. Burls, N. J. & Fedorov, A. V. Simulating Pliocene warmth and a permanent El Niño‐like state: the role of cloud albedo. Paleoceanogr. Paleoclimatol. 29, 893–910 (2014).

    Article  Google Scholar 

  52. Brierley, C. M. & Fedorov, A. V. Comparing the impacts of Miocene–Pliocene changes in inter-ocean gateways on climate: Central American Seaway, Bering Strait, and Indonesia. Earth Planet. Sci. Lett. 444, 116–130 (2016).

    Article  Google Scholar 

  53. bin Shaari, H., Yamamoto, M. & Irino, T. Enhanced upwelling in the eastern equatorial Pacific at the last five glacial terminations. Paleogeogr. Paleoclimatol. 386, 8–15 (2013).

    Article  Google Scholar 

  54. Brierley, C. M. et al. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 323, 1714–1718 (2009).

    Article  Google Scholar 

  55. Dekens, P. S., Ravelo, A. C. & McCarthy, M. D. Warm upwelling regions in the Pliocene Warm Period. Paleoceanogr. Paleoclimatol. 22, PA3211 (2007).

    Google Scholar 

  56. Etourneau, J., Schneider, R., Blanz, T. & Martinez, P. Intensification of the Walker and Hadley atmospheric circulations during the Pliocene–Pleistocene climate transition. Earth Planet. Sci. Lett. 297, 103–110 (2010).

    Article  Google Scholar 

  57. Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. https://doi.org/10.1038/ngeo2813 (2016).

  58. LaRiviere, J. P. et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97–100 (2012).

    Article  Google Scholar 

  59. Lawrence, K. T., Liu, Z. & Herbert, T. D. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science 312, 79–83 (2006).

    Article  Google Scholar 

  60. Li, L. et al. A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change. Earth Planet. Sci. Lett. 309, 10–20 (2011).

    Article  Google Scholar 

  61. Liu, J. et al. Eastern equatorial Pacific cold tongue evolution since the late Miocene linked to extratropical climate. Sci. Adv. 5, eaau6060 (2019).

    Article  Google Scholar 

  62. Martinez-Garcia, A., Rosell-Mele, A., McClymont, E. L., Gersonde, R. & Haug, G. H. Subpolar link to the emergence of the modern equatorial Pacific cold tongue. Science 328, 1550–1553 (2010).

    Article  Google Scholar 

  63. O’Brien, C. L. et al. High sea surface temperatures in tropical warm pools during the Pliocene. Nat. Geosci. https://doi.org/10.1038/ngeo2194 (2014).

  64. Pagani, M., Liu, Z., LaRiviere, J. & Ravelo, A. C. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat. Geosci. 3, 27–30 (2010).

    Article  Google Scholar 

  65. Rousselle, G., Beltran, C., Sicre, M.-A., Raffi, I. & De Rafélis, M. Changes in sea-surface conditions in the equatorial Pacific during the middle Miocene–Pliocene as inferred from coccolith geochemistry. Earth Planet. Sci. Lett. 361, 412–421 (2013).

    Article  Google Scholar 

  66. Seki, O. et al. Paleoceanographic changes in the eastern equatorial Pacific over the last 10 Myr. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2011PA002158 (2012).

  67. Zhang, Y. G., Pagani, M. & Liu, Z. A 12-million-year temperature history of the tropical Pacific Ocean. Science 344, 84–87 (2014).

    Article  Google Scholar 

  68. Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).

    Article  Google Scholar 

  69. Müller, P. J., Kirst, G., Ruhland, G., von Storch, I. & Rosell-Mele, A. Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998).

    Article  Google Scholar 

  70. Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T. & Otto-Bliesner, B. L. Pliocene warmth consistent with greenhouse gas forcing. Geophys. Res. Lett. 46, 9136–9144 (2019).

    Article  Google Scholar 

  71. Pawlowicz, R. M_Map: A mapping package for MATLAB v.1.4m (2020); www.eoas.ubc.ca/~rich/map.html

Download references

Acknowledgements

We thank J. Booth, J. Rolfe and J. Nicolson for their laboratory assistance and the International Ocean Discovery Program core repository for providing samples. This work benefited from conversations with L. Haynes and M. Lyle. We acknowledge high-performance computing support from Cheyenne (https://doi.org/10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the NSF. This work was supported by Natural Environment Research Council (NE/N015045/1; H.L.F.), the National Science Foundation (OCE-1844380 and OCE-2002448; N.J.B.) and a Sloan Ocean Fellowship (N.J.B.). H.L.F. personally thanks the breast cancer oncology, chemotherapy, radiotherapy and surgical team at St Bartholomew’s Hospital.

Author information

Authors and Affiliations

Authors

Contributions

H.L.F. and N.J.B. designed, analysed and interpreted the data. P.J. contributed to the numerical simulations and carbon budget analyses. H.L.F. wrote the manuscript with contributions from N.J.B.; H.L.F., N.J.B., P.J., A.J., R.P.C.-G., D.A.H. and A.V.F. contributed to the manuscript and the revisions.

Corresponding author

Correspondence to H. L. Ford.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Claire McKinley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Global benthic foraminifera oxygen isotope stack and North Pacific records.

Benthic isotope records of Prob-stack (A45), Site 1209 δ18O (B, blue circles) and δ13C (C, blue squares), and Site 1210 δ18O (D, orange circles) and δ13C (E, orange squares). The grey shading indicates the mid-Piacenzian warm period. Northern Hemisphere Glaciation (NHG) and Marine Isotope Stages KM3 and M2 are labelled.

Extended Data Fig. 2 Pliocene sea surface temperature records.

Sea surface temperature (SST) anomaly maps for the mid-Pliocene Warm Period (mid-Piacenzian 3.264–3.025 Ma) and Early Pliocene (4–5 Ma).

Extended Data Fig. 3 Early Pliocene δ13C anomaly maps for the Pacific Ocean.

Observed benthic δ13C and modelled zonal-mean (shaded contours in ‰) anomalies for the Early Pliocene (4–5 Ma). The benthic δ13C anomaly (‰) is calculated from the OC3 database20 with Late Holocene core top (diamonds) and modern δ13C ocean water (squares) values. Large symbols for open ocean sites are outlined in black, while symbols for marginal sites possibly influenced by boundary effects are small and outlined in grey. Horizontal basin-wide δ13C anomalies for 1000–1500 m (A), 2200–2800 m (B), and 3200–4000 m (C) water depth. The largest anomaly is found in the west due to western intensification of deep ocean circulation. The vertical cross section across the Pacific (D) shows the core and spatial extent of the PMOC.

Extended Data Fig. 4 Meridional overturning circulation in the Indo-Pacific Ocean.

Meridional overturning stream function in the Indo-Pacific ocean (in Sverdup, Sv) for the Pre-industrial (A), mid-Pliocene-like (mid-Piacenzian) (B), and Early Pliocene (C) model simulations. Contour interval is 2 Sv. Note the absence of active overturning cells in the preindustrial simulation other than the upper-ocean wind-driven cells.

Extended Data Fig. 5 Meridional ideal age for in Indo-Pacific Ocean.

Meridional ideal age in the Indo-Pacific ocean for the mid-Pliocene-like (mid-Piacenzian) (A), and Early Pliocene (B) model simulations minus Pre-industrial. Contour interval is 100 ideal years.

Extended Data Fig. 6 Modelled DIC anomaly for the Pacific Ocean basin.

Pacific basin modelled DIC anomaly from the Pre-Industrial to the mid-Pliocene-like simulation.

Extended Data Fig. 7 Modelled zonal mean DIC anomaly for the Pacific Ocean.

Pacific basin modelled zonal mean DIC anomaly from the Pre-Industrial to the mid-Pliocene-like simulation.

Extended Data Fig. 8 Model run age and DIC anomaly.

Time series of modelled DIC anomaly from the Pre-Industrial to the mid-Pliocene-like simulation. Deep ocean is near equilibrium at ~2000 model run years.

Supplementary information

Supplementary Data 1

Site information including site name, longitude, latitude and bottom water depth (m). OC3 data including pre-industrial δ13C natural ocean water column bottle data and Late Holocene δ13C from the benthic foraminifera genus Cibicides with the relevant search parameters for each site. Early Pliocene (4–5 Ma) δ13C values, standard deviation and number of data points within the interval. Calculated anomaly (Early Pliocene minus pre-industrial/Late Holocene). References used in the compilation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ford, H.L., Burls, N.J., Jacobs, P. et al. Sustained mid-Pliocene warmth led to deep water formation in the North Pacific. Nat. Geosci. 15, 658–663 (2022). https://doi.org/10.1038/s41561-022-00978-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00978-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing