Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transient mobilization of subcrustal carbon coincident with Palaeocene–Eocene Thermal Maximum

Abstract

Plume magmatism and continental breakup led to the opening of the northeast Atlantic Ocean during the globally warm early Cenozoic. This warmth culminated in a transient (170 thousand year, kyr) hyperthermal event associated with a large, if poorly constrained, emission of carbon called the Palaeocene–Eocene Thermal Maximum (PETM) 56 million years ago (Ma). Methane from hydrothermal vents in the coeval North Atlantic Igneous Province (NAIP) has been proposed as the trigger, though isotopic constraints from deep sea sediments have instead implicated direct volcanic carbon dioxide (CO2) emissions. Here we calculate that background levels of volcanic outgassing from mid-ocean ridges and large igneous provinces yield only one-fifth of the carbon required to trigger the hyperthermal. However, geochemical analyses of volcanic sequences spanning the rift-to-drift phase of the NAIP indicate a sudden ~220 kyr-long intensification of magmatic activity coincident with the PETM. This was likely driven by thinning and enhanced decompression melting of the sub-continental lithospheric mantle, which critically contained a high proportion of carbon-rich metasomatic carbonates. Melting models and coupled tectonic–geochemical simulations indicate that >104 gigatons of subcrustal carbon was mobilized into the ocean and atmosphere sufficiently rapidly to explain the scale and pace of the PETM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Early Cenozoic tectonic and magmatic evolution of the northeast Atlantic.
Fig. 2: Palaeocene–Eocene volcanostratigraphy and geochemistry of the proto-northeast Atlantic ridge.
Fig. 3: Simulations of volcanic carbon release during the PETM.
Fig. 4: Deep carbon mobilization and release in the North Atlantic during the PETM.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are provided in the online version of this article (Supplementary Data File S1) and in Extended Data Tables 16. The map in Fig. 1b was plotted with open source plate tectonic application software GPlates (https://www.gplates.org/; licensed for distribution under a GNU General Public License). Any new geochemical data generated in this study are also available to download via the figshare repository at: https://doi.org/10.6084/m9.figshare.19732948. Source data are provided with this paper.

Code availability

More details on the computational methods and tools used for this study are available from the corresponding author upon reasonable request.

References

  1. Storey, M., Duncan, R. A. & Swisher, C. C. Paleocene–Eocene Thermal Maximum and the opening of the northeast Atlantic. Science 316, 587–589 (2007).

    Article  Google Scholar 

  2. Storey, M., Duncan, R. A. & Tegner, C. Timing and duration of volcanism in the North Atlantic Igneous Province: implications for geodynamics and links to the Iceland hotspot. Chem. Geol. 241, 264–281 (2007).

    Article  Google Scholar 

  3. Steinberger, B., Bredow, E., Lebedev, S., Schaeffer, A. & Trond, H. T. Widespread volcanism in the Greenland–North Atlantic region explained by the Iceland plume. Nat. Geosci. 12, 61–68 (2019).

    Article  Google Scholar 

  4. Eldholm, O. & Grue, K. North Atlantic volcanic margins: dimensions and production rates. J. Geophys. Res. 99, 2955–2968 (1994).

    Article  Google Scholar 

  5. Saunders, A. D., Fitton, J. G., Kerr, A. C., Norry M. J. & Kent, R. W. in Large Igneous Provinces Vol. 100 (eds Mahoney, J. J. & Coffin, M. F.) 45–94 (AGU, 1997).

  6. White, R. S. et al. Lower-crustal intrusion on the North Atlantic continental margin. Nature 452, 460–464 (2008).

    Article  Google Scholar 

  7. Mitchell, R. N., Kilian, T. M. & Evans, D. A. D. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. Nature 482, 208–211 (2012).

    Article  Google Scholar 

  8. Zeebe, R. E. & Lourens, L. J. Solar system chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy. Science 365, 926–929 (2019).

    Article  Google Scholar 

  9. Frieling, J. et al. Extreme warmth and heat-stressed plankton in the tropics during the Paleocene–Eocene Thermal Maximum. Sci. Adv. 3, e1600891 (2017).

    Article  Google Scholar 

  10. Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    Article  Google Scholar 

  11. Gutjahr, M. et al. Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature 548, 573–577 (2017).

    Article  Google Scholar 

  12. Röhl, U., Westerhold, T., Bralower, T. J. & Zachos, J. C. On the duration of the Paleocene–Eocene Thermal Maximum (PETM). Geochem. Geophys. Geosyst. 8, Q12002 (2007).

    Article  Google Scholar 

  13. Haynes, L. L. & Hönisch, B. The seawater carbon inventory at the Paleocene–Eocene Thermal Maximum. Proc. Natl Acad. Sci. USA 117, 24088–24095 (2020).

    Article  Google Scholar 

  14. Dickens, G. R., O’Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).

    Article  Google Scholar 

  15. Svensen, H. et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545 (2004).

    Article  Google Scholar 

  16. Jones, S. M., Hoggett, M., Greene, S. E. & Dunkley Jones, T. Large igneous province thermogenic greenhouse gas flux could have initiated Paleocene–Eocene Thermal Maximum climate change. Nat. Commun. 10, 5547 (2019).

    Article  Google Scholar 

  17. Self, S., Thordarson, T. & Widdowson, M. Gas fluxes from flood basalt eruptions. Elements 1, 283–287 (2005).

    Article  Google Scholar 

  18. Chavrit, D., Humler, E. & Grasset, O. Mapping modern CO2 fluxes and mantle carbon content all along the mid-ocean ridge system. Earth Planet. Sci. Lett. 387, 229–239 (2014).

    Article  Google Scholar 

  19. Morton, A. C. & Keene, J. B. in Initial Reports DSDP Vol. 81 (eds Roberts, D. G. et al.) Ch. 19 (US Government Printing Office, 1984).

  20. Brown, S. & Downie, C. in Initial Reports DSDP Vol. 81 (eds Roberts, D. G. et al.) Ch. 13 (US Government Printing Office, 1984).

  21. Sluijs, A. et al. Subtropical Arctic Ocean temperature during the Palaeocene/Eocene thermal maximum. Nature 441, 610–613 (2006).

    Article  Google Scholar 

  22. Backman, J. et al. in Initial Reports DSDP Vol. 81 (eds Roberts, D.G. et al.) Ch. 38 (US Government Printing Office, 1984).

  23. Larsen, L. M., Fitton, J. G. & Pedersen, A. K. Paleogene volcanic ash layers in the Danish Basin: compositions and source areas in the North Atlantic Igneous Province. Lithos 71, 47–80 (2003).

    Article  Google Scholar 

  24. Fitton, J. G., Larsen, L. M., Saunders, A. D., Hardarson, B. S. & Kempton, P. D. Palaeogene continental to oceanic magmatism on the SE Greenland continental margin at 63 °N: a review of the results of Ocean Drilling Program Legs 152 and 163. J. Petrol. 41, 951–966 (2000).

    Article  Google Scholar 

  25. Stokke, E. W., Jones, M. T., Tierney, J. E., Svensen, H. H. & Whiteside, J. H. Temperature changes across the Paleocene–Eocene Thermal Maximum—a new high-resolution TEX86 temperature record from the Eastern North Sea Basin. Earth Planet. Sci. Lett. 544, 116388 (2020).

    Article  Google Scholar 

  26. Larsen, L. M., Waagstein, R., Pedersen, A. K. & Storey, M. Trans-Atlantic correlation of the Palaeogene volcanic successions in the Faeroe Islands and East Greenland. J. Geol. Soc. London 156, 1081–1095 (1999).

    Article  Google Scholar 

  27. Gariépy, C., Ludden, J. & Brooks, C. Isotopic and trace element constraints on the genesis of the Faeroe lava pile. Earth Planet. Sci. Lett. 63, 257–272 (1983).

    Article  Google Scholar 

  28. Hansen, J., Davidson, J., Jerram, D., Ottley, C. & Widdowson, M. Contrasting TiO2 compositions in early Cenozoic mafic sills of the Faroe Islands: an example of basalt formation from distinct melting regimes. Earth Sci. 8, 235–267 (2019).

    Google Scholar 

  29. Millett, J. M., Hole, M. J., Jolley, D. W., Passey, S. R. & Rossetti, L. Transient mantle cooling linked to regional volcanic shut-down and early rifting in the North Atlantic Igneous Province. Bull. Volcanol. 82, 61 (2020).

    Article  Google Scholar 

  30. Jolley, D. W., Millett, J. M., Schofield, N., Broadley, L. & Hole, M. J. Stratigraphy of volcanic rock successions of the North Atlantic rifted margin: the offshore record of the Faroe–Shetland and Rockall basins. Earth Environ. Sci. Trans. R. Soc. Edinburgh 112, 61–88 (2021).

    Article  Google Scholar 

  31. Holm, P. M., Hald, N. & Waagstein, R. Geochemical and Pb–Sr–Nd isotopic evidence for separate hot depleted and Iceland plume mantle sources for the Paleogene basalts of the Faroe Islands. Chem. Geol. 178, 95–125 (2001).

    Article  Google Scholar 

  32. Schilling, J.-G. & Noe-Nygaard, A. Faeroe–Iceland plume: rare-earth evidence. Earth Planet. Sci. Lett. 24, 1–14 (1974).

    Article  Google Scholar 

  33. Jourdan, F. et al. Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo Large Igneous Province, Botswana–Zimbabwe: lithosphere vs mantle plume contribution. J. Petrol. 48, 1043–1077 (2007).

    Article  Google Scholar 

  34. Aulbach, S., Sun, J., Tappe, S., E Höfer, H. & Gerdes, A. Volatile-rich metasomatism in the cratonic mantle beneath SW Greenland: link to kimberlites and mid-lithospheric discontinuities. J. Petrol. 58, 2311–2338 (2018).

    Article  Google Scholar 

  35. Bastow, I. D. & Keir, D. The protracted development of the continent–ocean transition in Afar. Nat. Geosci. 4, 248–250 (2011).

    Article  Google Scholar 

  36. Thirlwall, M. F., Upton, B. G. J. & Jenkins, C. Interaction between continental lithosphere and the Iceland Plume—Sr–Nd–Pb isotope geochemistry of tertiary basalts, NE Greenland. J. Petrol. 35, 839–879 (1994).

    Article  Google Scholar 

  37. Nøhr-Hansen, H. Palynostratigraphy of the Cretaceous–lower Palaeogene sedimentary succession in the Kangerlussuaq Basin, southern East Greenland. Rev. Palaeobot. Palynol. 178, 59–90 (2012).

    Article  Google Scholar 

  38. Holm, P. M. Nd, Sr and Pb isotope geochemistry of the Lower Lavas, E Greenland Tertiary Igneous Province.Geol. Soc. Spec. Publ. 39, 181 (1988).

    Article  Google Scholar 

  39. Muirhead, J. D. et al. Displaced cratonic mantle concentrates deep carbon during continental rifting. Nature 582, 67–72 (2020).

    Article  Google Scholar 

  40. Foley, S. F. Rejuvenation and erosion of the cratonic lithosphere. Nat. Geosci. 1, 503–510 (2008).

    Article  Google Scholar 

  41. Foley, S. F. & Fischer, T. P. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10, 897–902 (2017).

    Article  Google Scholar 

  42. Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).

    Article  Google Scholar 

  43. Gorczyk, W. & Gonzalez, C. M. CO2 degassing and melting of metasomatized mantle lithosphere during rifting—numerical study. Geosci. Front. 10, 1409–1420 (2019).

    Article  Google Scholar 

  44. Darbyshire, F. A. et al. A first detailed look at the Greenland lithosphere and upper mantle, using Rayleigh wave tomography. Geophys. J. Int. 158, 267–286 (2004).

    Article  Google Scholar 

  45. Nielsen, T. F. D. Tertiary alkaline magmatism in East Greenland: a review. Geol. Soc. Spec. Publ. 30, 489 (1987).

    Article  Google Scholar 

  46. Guimarães, A. R., Fitton, J. G., Kirstein, L. A. & Barfod, D. N. Contemporaneous intraplate magmatism on conjugate South Atlantic margins: a hotspot conundrum. Earth Planet. Sci. Lett. 536, 116147 (2020).

    Article  Google Scholar 

  47. Currie, C. A. & van Wijk, J. How craton margins are preserved: insights from geodynamic models. J. Geodyn. 100, 144–158 (2016).

    Article  Google Scholar 

  48. King, S. D. & Anderson, D. L. Edge-driven convection. Earth Planet. Sci. Lett. 160, 289–296 (1998).

    Article  Google Scholar 

  49. Debaille, V. et al. Primitive off-rift basalts from Iceland and Jan Mayen: Os-isotopic evidence for a mantle source containing enriched subcontinental lithosphere. Geochim. Cosmochim. Acta 73, 3423–3449 (2009).

    Article  Google Scholar 

  50. Torsvik, T. H. et al. Continental crust beneath southeast Iceland. Proc. Natl Acad. Sci. USA 112, E1818 (2015).

    Article  Google Scholar 

  51. Hanan, B. B. & Schilling, J. G. The dynamic evolution of the Iceland mantle plume: the lead isotope perspective. Earth Planet. Sci. Lett. 151, 43–60 (1997).

    Article  Google Scholar 

  52. Lee, H. et al. Massive and prolonged deep carbon emissions associated with continental rifting. Nat. Geosci. 9, 145–149 (2016).

    Article  Google Scholar 

  53. Wieczorek, R., Fantle, M. S., Kump, L. R. & Ravizza, G. Geochemical evidence for volcanic activity prior to and enhanced terrestrial weathering during the Paleocene Eocene Thermal Maximum. Geochim. Cosmochim. Acta 119, 391–410 (2013).

    Article  Google Scholar 

  54. Reynolds, P. et al. Hydrothermal vent complexes offshore Northeast Greenland: a potential role in driving the PETM. Earth Planet. Sci. Lett. 467, 72–78 (2017).

    Article  Google Scholar 

  55. Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article  Google Scholar 

  56. Boynton, W. V. and Henderson, P. in Cosmochemistry of the Rare Earth Elements: Meteorite Studies Vol. 2. Ch. 3 (Elsevier, 1984).

  57. Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Ann. Rev. Earth Planet. Sci. 44, 107–138 (2016).

    Article  Google Scholar 

  58. Karlsen, K. S., Conrad, C. P. & Magni, V. Deep water cycling and sea level change since the breakup of Pangea. Geochem. Geophys. Geosyst. 20, 2919–2935 (2019).

    Article  Google Scholar 

  59. Karlsen, K. S., Domeier, M., Gaina, C. & Conrad, C. P. A tracer-based algorithm for automatic generation of seafloor age grids from plate tectonic reconstructions. Comput. Geosci. 140, 104508 (2020).

    Article  Google Scholar 

  60. Merdith, A. S., Atkins, S. E. & Tetley, M. G. Tectonic controls on carbon and serpentinite storage in subducted upper oceanic lithosphere for the past 320 Ma. Front. Earth Sci. 7, 332 (2019).

    Article  Google Scholar 

  61. Merdith, A. S. et al. Pulsated global hydrogen and methane flux at mid-ocean ridges driven by Pangea breakup. Geochem. Geophys. Geosyst. 21, e2019GC008869 (2020).

    Article  Google Scholar 

  62. Fitton, J., Saunders, A., Larsen, L., Hardarson, B. & Norry, M. Volcanic rocks from the southeast Greenland Margin at 63 °N: composition, petrogenesis, and mantle sources. Proc. Ocean Drill. Prog. Sci. Results 152, 331–350 (1998).

    Google Scholar 

  63. Fitton, J. G. & Godard, M. Origin and evolution of magmas on the Ontong Java Plateau. Geol. Soc. Spec. Publ. 229, 151–178 (2004).

    Article  Google Scholar 

  64. Norrish, K. & Hutton, J. T. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta 33, 431–453 (1969).

    Article  Google Scholar 

  65. Reynolds, R. C. Matrix corrections in trace element analysis by X-ray fluorescence: estimation of the mass absorption coefficient by Compton scattering. Am. Mineral. 48, 1133–1143 (1963).

    Google Scholar 

  66. Govindaraju, K. 1994 compilation of working values and sample description for 383 geostandards. Geostand. Newsl. 18, 1–158 (1994).

    Article  Google Scholar 

  67. Jochum, K. P., Seufert, H. M. & Thirlwall, M. F. High-sensitivity Nb analysis by spark-source mass spectrometry (SSMS) and calibration of XRF Nb and Zr. Chem. Geol. 81, 1–16 (1990).

    Article  Google Scholar 

  68. Imai, N., Terashima, S., Itoh, S. & Ando, A. 1994 compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples, “igneous rock series”. Geostand. Newsl. 19, 135–213 (1995).

    Article  Google Scholar 

  69. Murton, B. J., Taylor, R. N. & Thirlwall, M. F. Plume–ridge interaction: a geochemical perspective from the Reykjanes Ridge. J. Petrol. 43, 1987–2012 (2002).

    Article  Google Scholar 

  70. Tanaka, T. et al. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem. Geol. 168, 279–281 (2000).

    Article  Google Scholar 

  71. Jacobsen, S. B. & Wasserburg, G. J. Sm–Nd isotopic evolution of chondrites. Earth Planet. Sci. Lett. 50, 139–155 (1980).

    Article  Google Scholar 

  72. Munro, L. E., Longstaffe, F. J. & White, C. D. Effects of heating on the carbon and oxygen-isotope compositions of structural carbonate in bioapatite from modern deer bone. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 142–150 (2008).

    Article  Google Scholar 

  73. Macintyre, R. M. & Hamilton, P. J. in Initial Reports DSDP Vol. 81 (eds Roberts, D. G. et al.) Ch. 30 (US Government Printing Office, 1984).

  74. Roberts, D. G., Backman, J. Morton, A. C., Murray, J. W. & Keene, J. B. in Initial Reports DSDP Vol. 81 (eds Roberts, D. G. et al.) Ch. 39 (US Government Printing Office, 1984).

  75. Berggren, W. A., Kent, D. V., Swisher, C. C. & Aubrey, M. P. A revised Cenozoic geochronology and chronostratigraphy. Soc. Sediment. Geol. Spec. Publ. 54, 129–212 (1995).

    Google Scholar 

  76. Lund, J. A late Paleocene non-marine microflora from the interbasaltic coals of the Faeroe Islands, North Atlantic. Bull. Geol. Soc. Denmark 37, 181–203 (1988).

    Article  Google Scholar 

  77. J. G., Ogg. in Geomagnetic Polarity Time Scale. Ch. 5 (Elsevier, 2012).

  78. Hirschmann, M. M., Renne, P. R. & McBirney, A. R. 40Ar/39Ar dating of the Skaergaard intrusion. Earth Planet. Sci. Lett. 146, 645–658 (1997).

    Article  Google Scholar 

  79. Jakobsen, J. K. et al. Parental magma of the Skaergaard intrusion: constraints from melt inclusions in primitive troctolite blocks and FG-1 dykes. Contrib. Mineral. Petrol. 159, 61–79 (2009).

    Article  Google Scholar 

  80. Waagstein, R. Structure, composition and age of the Faeroe basalt plateau. Geol. Soc. Spec. Publ. 39, 225–238 (1988).

    Article  Google Scholar 

  81. Fitton, J. G., Williams, R., Barry, T. L. & Saunders, A. D. The role of lithosphere thickness in the formation of ocean islands and seamounts: contrasts between the Louisville and Emperor–Hawaiian hotspot trails. J. Petrol. 61, egaa111 (2020).

    Article  Google Scholar 

  82. McKenzie, D. & O'Nions, R. K. Partial melt distributions from inversion of rare earth element concentrations. J. Petrol. 32, 1021–1091 (1991).

    Article  Google Scholar 

  83. Baker, M. B. & Stolper, E. M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta 58, 2811–2827 (1994).

    Article  Google Scholar 

  84. Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998).

    Article  Google Scholar 

  85. Hastie, A. R. et al. The composition of mantle plumes and the deep earth. Earth Planet. Sci. Lett. 444, 13–25 (2016).

    Article  Google Scholar 

  86. Hart, S. R. & Dunn, T. Experimental cpx/melt partitioning of 24 trace elements. Contrib. Mineral. Petrol. 113, 1–8 (1993).

    Article  Google Scholar 

  87. Hauri, E. H., Wagner, T. P. & Grove, T. L. Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem. Geol. 117, 149–166 (1994).

    Article  Google Scholar 

  88. Johnson, K. T. M. Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib. Mineral. Petrol. 133, 60–68 (1998).

    Article  Google Scholar 

  89. McDade, P., Blundy, J. D. & Wood, B. J. Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa. Phys. Earth Planet. Int. 139, 129–147 (2003).

    Article  Google Scholar 

  90. Salters, V. J. M., Longhi, J. E. & Bizimis, M. Near mantle solidus trace element partitioning at pressures up to 3.4 GPa. Geochem. Geophys. Geosyst. 3, 1–23 (2002).

    Article  Google Scholar 

  91. Skulski, T., Minarik, W. & Watson, E. B. High-pressure experimental trace-element partitioning between clinopyroxene and basaltic melts. Chem. Geol. 117, 127–147 (1994).

    Article  Google Scholar 

  92. Tuff, J. & Gibson, S. A. Trace-element partitioning between garnet, clinopyroxene and Fe-rich picritic melts at 3 to 7 GPa. Contrib. Mineral. Petrol. 153, 369–387 (2007).

    Article  Google Scholar 

  93. Irving, A. J. A review of experimental studies of crystal/liquid trace element partitioning. Geochim. Cosmochim. Acta 42, 743–770 (1978).

    Article  Google Scholar 

  94. Perfit, M. R. in Encyclopedia of Ocean Sciences 2nd edn (ed. Steele, J. H.) 815–825 (Academic Press, 2001).

  95. Müller, R. D. & Dutkiewicz, A. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci. Adv. 4, eaaq0500 (2018).

    Article  Google Scholar 

  96. O’Reilly, S. Y. & Griffin, W. L. Imaging global chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: geophysical implications. Tectonophysics 416, 289–309 (2006).

    Article  Google Scholar 

  97. Tappe, S. et al. Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr–Nd–Hf–Pb isotope constraints from alkaline and carbonatite intrusives. Earth Planet. Sci. Lett. 256, 433–454 (2007).

    Article  Google Scholar 

  98. Tappe, S. et al. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth Planet. Scie. Lett. 466, 152–167 (2017).

    Article  Google Scholar 

  99. Harrison, R. K. and Merriman, R. J. in Initial Reports DSDP Vol. 81 (eds Roberts, D. G. et al.) Ch. 29 (US Government Printing Office, 1984).

  100. Gernon, T. M. et al. Complex subvolcanic magma plumbing system of an alkali basaltic maar–diatreme volcano (Elie Ness, Fife, Scotland). Lithos 264, 70–85 (2016).

    Article  Google Scholar 

  101. Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. & Zanettin, B. A chemical classification of volcanic rocks based on the total alkali–silica diagram. J. Petrol. 27, 745–750 (1986).

    Article  Google Scholar 

  102. Chambers, L. M. Age and Duration of the British Tertiary Igneous Province: Implications for the Development of the Ancestral Iceland Plume. PhD thesis, Univ. of Edinburgh (2000).

  103. Brodie, J. A. & Fitton, J. G. Data report: composition of basaltic lavas from the seaward-dipping reflector sequence recovered during Deep Sea Drilling Project Leg 81 (Hatton Bank). Proc. Ocean Drill. Prog. Sci. Res. 152, 431–435 (1998).

    Google Scholar 

  104. Fitton, J. G., Mahoney, J. J., Wallace, P. J. & Saunders, A. D. Origin and evolution of the Ontong Java Plateau: introduction. Geol. Soc. Spec. Publ. 229, 1–8 (2004).

    Article  Google Scholar 

  105. McDonough, W. F. & s. Sun, S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a Natural Environment Research Council (NERC) grant (NE/R004978/1) to T.M.G., which also supported T.K.H. T.M.G. and T.K.H. received funding from The Alan Turing Institute under the EPSRC grant EP/N510129/1. J.L. was supported by NERC grant NE/K00543X/1 awarded to M.R.P. and T.M.G. T.M.G. acknowledges the Distinguished Geologists’ Memorial Fund of the Geological Society of London to sample the Rockall tuffs at the International Ocean Discovery Program (IODP) Bremen Core Repository (BCR). R.N.M. was supported by a National Natural Science Foundation of China grant (41888101) and a Key Research Programme of the Institute of Geology & Geophysics, Chinese Academy of Sciences (CAS), grant (number IGGCAS-201905). A.S.M. was supported by the Deep Carbon Observatory, Richard Lounsbery Foundation and MCSA Fellowship NEOEARTH, project 893615. We are grateful to the staff of the BCR, especially W. Hale, for their assistance, and to M. Cooper, A. Michalik and A. Milton (University of Southampton) for laboratory assistance. We thank G. Hincks for illustrating the Late Palaeocene northeast Atlantic ridge (Fig. 4).

Author information

Authors and Affiliations

Authors

Contributions

T.M.G. conceived the idea, led the study, interpreted the data and prepared the manuscript and figures. T.K.H. performed the modelling, with input from T.M.G. R.N.M. assisted with tectonic and geodynamic interpretation, and J.G.F., J.L., R.B. and M.R.P. provided support with geochemical analysis and interpretation. J.G.F. carried out the melt modelling with input from T.M.G. A.S.M. calculated the seafloor production rates and provided support with GPlates and ‘pyGPlates’. D.K. contributed to tectonic interpretations. T.M.G. wrote the manuscript with input from all co-authors.

Corresponding author

Correspondence to Thomas M. Gernon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Primary Handling Editors: James Super and Rebecca Neely, in collaboration with the Nature Geoscience team. Nature Geoscience thanks James Muirhead, Sverre Planke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Schematic stratigraphic log of Palaeocene–Eocene volcanic and sedimentary lithofacies at DSDP Leg 81 Site 555, and the composition of tuff layers.

The corresponding plots show the major-element composition, and Mg#, of tuff layers, shown as horizontal red lines (and labelled by lithology; see also Extended Data Fig. 3a) on the log. The Mg# of a number of basalt lavas and tuffs from Harrison and Merriman99 are also shown as filled grey symbols.

Extended Data Fig. 2 Compositional characteristics of lavas from the Faroes and Greenland.

Simplified log of basalt lava successions from the Faroes and east Greenland (modified after ref. 26, with Mg# and (Eu/Yb)n (chondrite-normalised56); Mg# data are from ref. 26 and (Eu/Yb)n are from refs. 27,32.

Source data

Extended Data Fig. 3 Geochemical characteristics of tuffs layers from DSDP Leg 81 Site 555.

Total alkali-silica (TAS) diagram (after ref. 101) showing the composition of volcanic tuffs of PETM age (approximately 700-600 mbsl; see Extended Data Fig. 2), in addition to Danish ashes of the ‘negative series’23. b, Nb versus Zr of tuffs from Site 555, shown alongside tuffs of the Danish Ash Series23 and Balder Formation in the North Sea102, and lavas from the Rockall/Hatton Bank103. The fields shown for OIB, N-MORB and Iceland rift-zones are from ref. 104. c, Incompatible element patterns of Rockall tuffs from the upper section (700-600 mbsl) normalized to primitive mantle105. The corresponding depths in the core are provided in Extended Data Table 3. For comparison, some Danish ashes (negative series) are also shown23.

Extended Data Fig. 4 Input distributions for sampled variables used in carbon outgassing simulations.

a, Fraction of CO2 present in mid-ocean ridge basalts and those of large igneous provinces (LIPs); b, Fraction of CO2 lost from the ocean crust via degassing at mid-ocean ridges; c, Fraction of CO2 lost from LIP basalt eruptions; d, Thickness of the sub-continental lithospheric mantle (SCLM); e, Width of the SCLM melting zone beneath the mid-ocean ridge system; f, Fraction of CO2 present in the SCLM. Note that the red line denotes the mean. See the Methods for further information on these variables.

Extended Data Table 1 Compositional characteristics of volcanic tuffs from the Rockall Plateau in the northeast Atlantic.

Analysis of major and trace element compositions of volcanic tuffs from DSDP Site 555 (for stratigraphic context, see Fig. 2a and Extended Data Fig. 1). Note that Mg# = 100 x molecular MgO/(MgO + FeO), where FeO is assumed to be 0.9FeOT.

Extended Data Table 2 Neodymium isotope characteristics of volcanic rocks from the Rockall Plateau.

143Nd/144Nd and associated εNd measurements of tuffs, lavas and hyaloclastites from DSDP Leg 81 Site 555. The sample ID number includes the site number (555), core box reference (e.g., 65-1), and the depth from the top of a given core (in cm). The 143Nd/144Nd ratios and associated εNd values are corrected to an age of 55 Ma. Also provided are published 143Nd/144Nd and associated εNd measurements from Site 555 lavas73. Errors on discrete measurements are 2 and 1 standard error (SE).

Extended Data Table 3 Trace element composition of volcanic rocks from the Rockall Plateau.

Trace element compositions by ICP-MS of selected PETM-age tuffs from Site 555. The associated recoveries of trace elements from standard reference materials are provided in Supplementary Table 2.

Extended Data Table 4 Distribution coefficients used in melt modelling.

Distribution coefficients (D) used in the construction of Fig. 2e. Note that n = number of individual values of D.

Extended Data Table 5 Inputs used in degassing models.

Description of inputs used in modelling of CO2 fluxes from mid-ocean ridges, large igneous provinces (LIPs), and melting of the sub-continental lithospheric mantle (SCLM). See the Methods for further details and model description.

Extended Data Table 6 Variables used in carbon flux simulations.

Description of variables used in the carbon flux simulations (Fig. 3) given best estimates of the minimum, maximum and mean for each variable, based on data and observations (see Methods). We fixed the standard deviation, SD = 0.2 x range. See the Methods for further details and model description.

Supplementary information

Supplementary Information

Supplementary Tables 1–2.

Supplementary Data File S1

Major and trace element compositions of volcanic tuffs from DSDP Site 555 in the northeast Atlantic (for stratigraphic context, see Fig. 2a and Extended Data Fig. 1). Note that Mg# = 100 × molecular MgO/(MgO + FeO), where FeO is assumed to be 0.9FeOT.

Supplementary Data File S2

143Nd/144Nd and associated ϵNd measurements of tuffs, lavas and hyaloclastites from DSDP Leg 81 Site 555. The sample ID number includes the site number (555), core box reference (for example, 65-1) and the depth from the top of a given core (in cm). The 143Nd/144Nd ratios and associated ϵNd values are corrected to an age of 55 Ma. Also provided are published 143Nd/144Nd and associated ϵNd measurements from Site 555 lavas73. Errors on discrete measurements are 2 and 1 standard error.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gernon, T.M., Barr, R., Fitton, J.G. et al. Transient mobilization of subcrustal carbon coincident with Palaeocene–Eocene Thermal Maximum. Nat. Geosci. 15, 573–579 (2022). https://doi.org/10.1038/s41561-022-00967-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00967-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing