Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pulses in silicic arc magmatism initiate end-Permian climate instability and extinction

Abstract

Brief pulses of intense volcanic eruptions along convergent margins emit substantial volatiles that drive climatic excursions that can lead to major extinction events. However, correlating volcanic outpouring to environmental crises in the geological past is often difficult due to poor preservation of volcanic sequences and the need for precise dating methods. Here we present a high-fidelity CA-TIMS U–Pb zircon record of an end-Permian flare-up event in eastern Australia, which involved the eruption of >39,000–150,000 km3 of silicic magma in circa 4.21 ± 0.5 million years. A correlated high-resolution tephra record (circa 260–249 Ma) in the proximal sedimentary basins suggests recurrence of eruptions from the volcanic field in intervals of ~51,000–145,000 years. Peak eruption activity at 253 ± 0.5 million years ago is chronologically associated with intervals of pronounced species decline and the demise of the Glossopteris forests in the initial stages of the end-Permian mass extinction event (~1–2 Myr). Simultaneous eruptions along multiple arcs around the globe occurred at the same time as eastern Australia. In conjunction, these global eruptions are considered as a trigger of greenhouse crises and ecosystem stress that preceded the catastrophic eruption of the Siberian Traps.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global arc activity on the Pangea supercontinent at circa 253 Ma. Active volcanic arcs surrounded the margin of the supercontinent at the end of the Permian.
Fig. 2: Geological maps of eastern Australia Permian/Triassic magmatism.
Fig. 3: Eastern Australia magmatic flare-up.
Fig. 4: Eastern Australia flare-up and the end-Permian mass extinction.

Similar content being viewed by others

Data availability

The raw geochronological data for the paper have been deposited in EARTHCHEM (https://doi.org/10.26022/IEDA/112231). The authors declare that all other data supporting the findings of this study are available within the paper and its supplementary information files, with their sources annotated in the text.

References

  1. Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C. R. Geosci. 335, 113–140 (2003).

    Article  Google Scholar 

  2. Campbell, I., Czamanske, G., Fedorenko, V., Hill, R. & Stepanov, V. Synchronism of the Siberian Traps and the Permian–Triassic boundary. Science 258, 1760–1763 (1992).

    Article  Google Scholar 

  3. Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction. Sci. Adv. 1, e1500470 (2015).

    Article  Google Scholar 

  4. Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40, 89–111 (2012).

    Article  Google Scholar 

  5. Schneebeli-Hermann, E. et al. Evidence for atmospheric carbon injection during the end-Permian extinction. Geology 41, 579–582 (2013).

    Article  Google Scholar 

  6. Lee, C. & Lackey, J. Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements 11, 125–130 (2015).

    Article  Google Scholar 

  7. McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).

    Article  Google Scholar 

  8. Ratschbacher, B. C., Paterson, S. R. & Fischer, T. P. Spatial and depth‐dependent variations in magma volume addition and addition rates to continental arcs: application to global CO2 fluxes since 750 Ma. Geochem. Geophys. Geosyst. 20, 2997–3018 (2019).

    Article  Google Scholar 

  9. Soreghan, G. S., Soreghan, M. J. & Heavens, N. G. Explosive volcanism as a key driver of the late Paleozoic ice age. Geology 47, 600–604 (2019).

    Article  Google Scholar 

  10. Jones, M. T., Sparks, R. S. J. & Valdes, P. J. The climatic impact of supervolcanic ash blankets. Clim. Dyn. 29, 553–564 (2007).

    Article  Google Scholar 

  11. DeCelles, P. G., Ducea, M. N., Kapp, P. & Zandt, G. Cyclicity in cordilleran orogenic systems. Nat. Geosci. 2, 251–257 (2009).

    Article  Google Scholar 

  12. Ducea, M. N., Paterson, S. R. & DeCelles, P. G. High-volume magmatic events in subduction systems. Elements 11, 99–104 (2015).

    Article  Google Scholar 

  13. Milan, L. A., Daczko, N. R. & Clarke, G. L. Cordillera Zealandia: a Mesozoic arc flare-up on the palaeo-Pacific Gondwana Margin. Sci. Rep. 7, 261 (2017).

    Article  Google Scholar 

  14. Gravley, D. M., Deering, C. D., Leonard, G. S. & Rowland, J. V. Ignimbrite flare-ups and their drivers: a New Zealand perspective. Earth Sci. Rev. 162, 65–82 (2016).

    Article  Google Scholar 

  15. de Silva, S. L., Riggs, N. R. & Barth, A. P. Quickening the pulse: fractal tempos in continental arc magmatism. Elements 11, 113–118 (2015).

    Article  Google Scholar 

  16. Attia, S., Cottle, J. M. & Paterson, S. R. Erupted zircon record of continental crust formation during mantle driven arc flare-ups. Geology 48, 446–451 (2020).

    Article  Google Scholar 

  17. Chisholm, E.-K. I., Simpson, C. & Blevin, P. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2010–June 2012 (Geoscience Australia, 2014).

  18. McPhie, J. Evolution of a non-resurgent cauldron: the Late Permian Coombadjha volcanic complex, northeastern New South Wales, Australia. Geol. Mag. 123, 257–277 (1986).

    Article  Google Scholar 

  19. Lackie, M. The magnetic fabric of the Late Permian Dundee Ignimbrite, Dundee, NSW. Explor. Geophys. 19, 481–488 (1988).

    Article  Google Scholar 

  20. Stewart, A. Facies in an Upper Permian volcanic succession, Emmaville Volcanics, Deepwater, northeastern New South Wales. Aust. J. Earth Sci. 48, 929–942 (2001).

    Article  Google Scholar 

  21. Milan, L. A. et al. A new reconstruction for Permian East Gondwana based on zircon data from ophiolite of the East Australian Great Serpentinite Belt. Geophys. Res. Lett. 48, e2020GL090293 (2021).

    Article  Google Scholar 

  22. Rosenbaum, G. The Tasmanides: Phanerozoic tectonic evolution of eastern Australia. Annu. Rev. Earth Planet. Sci. 46, 291–325 (2018).

    Article  Google Scholar 

  23. Shaw, S., Flood, R. & Pearson, N. The New England Batholith of eastern Australia: evidence of silicic magma mixing from zircon 176Hf/177Hf ratios. Lithos 126, 115–126 (2011).

    Article  Google Scholar 

  24. Kohn, B. et al. Shaping the Australian crust over the last 300 million years: insights from fission track thermotectonic imaging and denudation studies of key terranes. Aust. J. Earth Sci. 49, 697–717 (2002).

    Article  Google Scholar 

  25. Metcalfe, I., Crowley, J., Nicoll, R. & Schmitz, M. High-precision U–Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 28, 61–81 (2015).

    Article  Google Scholar 

  26. Laurie, J. et al. Calibrating the Middle and Late Permian palynostratigraphy of Australia to the geologic time-scale via U–Pb zircon CA-IDTIMS dating. Aust. J. Earth Sci. 63, 701–730 (2016).

    Article  Google Scholar 

  27. Creech, M. Tuffaceous deposition in the Newcastle Coal Measures: challenging existing concepts of peat formation in the Sydney Basin, New South Wales, Australia. Int. J. Coal Geol. 51, 185–214 (2002).

    Article  Google Scholar 

  28. Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).

    Article  Google Scholar 

  29. Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana. Geology, 49, 1089–1095 (2021).

  30. Grevenitz, P., Carr, P. & Hutton, A. Origin, alteration and geochemical correlation of Late Permian airfall tuffs in coal measures, Sydney Basin, Australia. Int. J. Coal Geol. 55, 27–46 (2003).

    Article  Google Scholar 

  31. Phillips, L. et al. U–Pb geochronology and palynology from Lopingian (Upper Permian) coal measure strata of the Galilee Basin, Queensland, Australia. Aust. J. Earth Sci. 65, 153–173 (2018).

    Article  Google Scholar 

  32. Siégel, C., Bryan, S., Allen, C., Gust, D. & Purdy, D. Crustal evolution in the New England Orogen, Australia: repeated igneous activity and scale of magmatism govern the composition and isotopic character of the continental crust. J. Petrol., 61, 1–28 (2020).

  33. Wang, X. et al. Convergent continental margin volcanic source for ash beds at the Permian–Triassic boundary, South China: constraints from trace elements and Hf-isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 154–165 (2019).

    Article  Google Scholar 

  34. Nelson, D. & Cottle, J. Tracking voluminous Permian volcanism of the Choiyoi Province into central Antarctica. Lithosphere 11, 386–398 (2019).

    Article  Google Scholar 

  35. He, B., Zhong, Y.-T., Xu, Y.-G. & Li, X.-H. Triggers of Permo-Triassic boundary mass extinction in South China: the Siberian Traps or Paleo-Tethys ignimbrite flare-up? Lithos 204, 258–267 (2014).

    Article  Google Scholar 

  36. Cope, T. Phanerozoic magmatic tempos of North China. Earth Planet. Sci. Lett. 468, 1–10 (2017).

    Article  Google Scholar 

  37. Sun, Y. et al. Lethally hot temperatures during the Early Triassic greenhouse. Science 338, 366–370 (2012).

    Article  Google Scholar 

  38. Jin, Y. et al. Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science 289, 432–436 (2000).

    Article  Google Scholar 

  39. Song, H., Wignall, P. B., Tong, J. & Yin, H. Two pulses of extinction during the Permian–Triassic crisis. Nat. Geosci. 6, 52–56 (2013).

    Article  Google Scholar 

  40. Ramezani, J. & Bowring, S. A. Advances in numerical calibration of the Permian timescale based on radioisotopic geochronology. Geol. Soc. Spec. Publ. 450, 51–60 (2018).

    Article  Google Scholar 

  41. Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).

    Article  Google Scholar 

  42. Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).

    Article  Google Scholar 

  43. Mundil, R., Ludwig, K. R., Metcalfe, I. & Renne, P. R. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305, 1760–1763 (2004).

    Article  Google Scholar 

  44. Chen, B. et al. Permian ice volume and palaeoclimate history: oxygen isotope proxies revisited. Gondwana Res. 24, 77–89 (2013).

    Article  Google Scholar 

  45. Shen, S. Z. et al. High‐resolution Lopingian (Late Permian) timescale of South China. Geol. J. 45, 122–134 (2010).

    Article  Google Scholar 

  46. Shellnutt, J. G., Denyszyn, S. W. & Mundil, R. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Res. 22, 118–126 (2012).

    Article  Google Scholar 

  47. Fielding, C. R. et al. Sedimentology of the continental end-Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology 68, 30–62 (2021).

    Article  Google Scholar 

  48. Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 1–12 (2019).

    Article  Google Scholar 

  49. Liu, Z. et al. Osmium-isotope evidence for volcanism across the Wuchiapingian–Changhsingian boundary interval. Chem. Geol. 529, 119313 (2019).

    Article  Google Scholar 

  50. Cheng, C. et al. Permian carbon isotope and clay mineral records from the Xikou section, Zhen’an, Shaanxi Province, central China: climatological implications for the easternmost Paleo-Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 407–422 (2019).

    Article  Google Scholar 

  51. Gastaldo, R. A. et al. The base of the Lystrosaurus Assemblage Zone, Karoo Basin, predates the end-Permian marine extinction. Nat. Commun. 11, 1–8 (2020).

    Article  Google Scholar 

  52. Retallack, G. J. et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 233–251 (2011).

    Article  Google Scholar 

  53. Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513 (2020).

    Article  Google Scholar 

  54. Yugan, J., Jing, Z. & Qinghua, S. Two Phases of the End-Permian Mass Extinction. In Pangea: Global Environments and Resources — Memoir, 17, 813-822 (1994).

  55. Williams, M. L., Jones, B. G. & Carr, P. F. The interplay between massive volcanism and the local environment: geochemistry of the Late Permian mass extinction across the Sydney Basin, Australia. Gondwana Res. 51, 149–169 (2017).

    Article  Google Scholar 

  56. van der Boon, A. et al. Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up. Clim. Past 17, 229–239 (2021).

    Article  Google Scholar 

  57. Metcalfe, I. Tectonic evolution of Sundaland. Bull. Geol. Soc. Malays. 63, 27–60 (2017).

    Article  Google Scholar 

  58. Maravelis, A. G. et al. Re-assessing the Upper Permian stratigraphic succession of the Northern Sydney Basin, Australia, by CA-IDTIMS. Geosciences 10, 474 (2020).

    Article  Google Scholar 

  59. Voice, P. J., Kowalewski, M. & Eriksson, K. A. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J. Geol. 119, 109–126 (2011).

    Article  Google Scholar 

  60. Watson, E. B., Wark, D. A. & Thomas, J. B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151, 413–433 (2006).

    Article  Google Scholar 

  61. Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).

    Article  Google Scholar 

  62. Wiedenbeck, M. et al. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Newsl. 19, 1–23 (1995).

    Article  Google Scholar 

  63. Mattinson, J. M. Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).

    Article  Google Scholar 

  64. Krogh, T. E. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta 37, 485–494 (1973).

    Article  Google Scholar 

  65. Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).

    Article  Google Scholar 

  66. Schmitz, M. D. & Schoene, B. Derivation of isotope ratios, errors, and error correlations for U–Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem. Geophys. Geosyst. 8, https://doi.org/10.1029/2006gc001492 (2007).

  67. Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME tracer calibration part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).

    Article  Google Scholar 

  68. Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971).

    Article  Google Scholar 

  69. Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614 (2012).

    Article  Google Scholar 

  70. Crowley, J. L., Schoene, B. & Bowring, S. A. U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35, 1123–1126 (2007).

    Article  Google Scholar 

  71. Ludwig, K. R. User's manual for Isoplot 3.00 (Berkley Geochronology Center, 2003).

  72. Offenburg, A. C. & Pogson, D. J. Geological Map of New England 1:500,000 (Geological Survey of New South Wales, 1973).

  73. Cranfield, L. C., Hutton, L. J. & Green, P. M. Geological Map of Ipswich 1:100,000 (Geological Survey of Queensland, 1978).

  74. Shaw, S. E. & Flood, R. H. The New England Batholith, eastern Australia: geochemical variations in time and space. J. Geophys. Res. Solid Earth 86, 10530–10544 (1981).

    Article  Google Scholar 

  75. Barnes, R. G., Brown, R. E., Brownlow, J. W. & Stroud, W. J. Late Permian volcanics in New England. Q. Notes Geol. Surv. N. South Wales 84, 1–36 (1991).

    Google Scholar 

  76. Finlayson, D. M. & Collins, C. D. N. Lithospheric velocity structures under the southern New England Orogen: evidence for underplating at the Tasman Sea margin. Aust. J. Earth Sci. 40, 141–153 (1993).

    Article  Google Scholar 

  77. Timothy, C., Geoffrey, L. C., Nathan, R. D., Sandra, P. & Adrianna, R. Orthopyroxene–omphacite- and garnet–omphacite-bearing magmatic assemblages, Breaksea Orthogneiss, New Zealand: oxidation state controlled by high-P oxide fractionation. Lithos 216–217, 1–16 (2015).

    Google Scholar 

  78. Chapman, T., Clarke, G. L. & Daczko, N. R. Crustal differentiation in a thickened arc—evaluating depth dependences. J. Petrol. 57, 595–620 (2016).

    Article  Google Scholar 

  79. Jagoutz, O. & Behn, M. D. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature 504, 131–134 (2013).

    Article  Google Scholar 

  80. Chapman, J. B., Ducea, M. N., DeCelles, P. G. & Profeta, L. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: an example from the North American Cordillera. Geology 43, 919–922 (2015).

    Article  Google Scholar 

  81. Bryant, C. J. A Compendium of Granites of the Southern New England Orogen, Eastern Australia (Geological Survey of New South Wales, 2017).

  82. Phillips, G., Landenberger, B. & Belousova, E. A. Building the New England Batholith, eastern Australia—linking granite petrogenesis with geodynamic setting using Hf isotopes in zircon. Lithos 122, 1–12 (2011).

    Article  Google Scholar 

  83. Kemp, A., Hawkesworth, C., Collins, W., Gray, C. & Blevin, P. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth Planet. Sci. Lett. 284, 455–466 (2009).

    Article  Google Scholar 

  84. Anderson, J. R., Fraser, G. L., McLennan, S. M. & Lewis, C. J. A U–Pb Geochronology Compilation for Northern Australia Report No. 2017/22 (Geoscience Australia, 2017).

  85. Belousova, E. A., Griffin, W. L. & O’Reilly, S. Y. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids. J. Petrol. 47, 329–353 (2005).

    Article  Google Scholar 

  86. Bodorkos, S. et al. U–Pb Ages from the Central Lachlan Orogen and New England Orogen, New South Wales Report No. 2016/21 (Geoscience Australia, 2016).

  87. Cawood, P. A., Pisarevsky, S. A. & Leitch, E. C. Unraveling the New England orocline, east Gondwana accretionary margin. Tectonics 30, 1–15 (2011).

  88. Chisholm, E. I., Blevin, P. L. & Simpson, C. J. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2012–June 2014 Report No. 2014/13 (Geoscience Australia, 2014).

  89. Chisholm, E. I., Blevin, P. L. & Simpson, C. J. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2010–June 2012 Report No. 2014/13 (Geoscience Australia, 2014).

  90. Cross, A. & Blevin, P. L. Summary of Results for the Joint GSNSW–GA Geochronology Project Report No. GS2013/0426 (Geoscience Australia, 2013).

  91. Craven, S. J., Daczko, N. R. & Halpin, J. A. Thermal gradient and timing of high-T–low-P metamorphism in the Wongwibinda Metamorphic Complex, southern New England Orogen, Australia. J. Metamorph. Geol. 30, 3–20 (2012).

    Article  Google Scholar 

  92. Black, L. P. U–Pb Zircon Ages Obtained During 2006/07 for NSW Geological Survey Projects (Geoscience Australia, 2007).

  93. Rosenbaum, G., Li, P. & Rubatto, D. The contorted New England Orogen (eastern Australia): new evidence from U–Pb geochronology of early Permian granitoids. Tectonics 31, https://doi.org/10.1029/2011tc002960 (2012).

  94. Walthenberg, K., Blevin, P. L., Bull, K. F., Cronin, D. E. & Armistead, S. E. New SHRIMP U–Pb Zircon Ages from the Lachland Orogen and the New England Orogen, New South Wales: Mineral Systems Projects, July 2015–June 2016 Report No. 2016/28 (Geoscience Australia, 2016).

  95. Walthenberg, K., Blevin, P. L., Bodorkos, S. & Cronin, D. E. New SHRIMP U–Pb Ages from the New England Orogen, New South Wales: July 2014–June 2015 Report No. 2015/28 (Geoscience Australia, 2015).

  96. Jeon, H., Williams, I. S. & Chappell, B. W. Magma to mud to magma: rapid crustal recycling by Permian granite magmatism near the eastern Gondwana margin. Earth Planet. Sci. Lett. 319, 104–117 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

T.C. acknowledges funding via the University of New England Postdoctoral Fellowship scheme and resources at the School of Environment and Rural Sciences. I.M. acknowledges funding provided by the Australian Research Council Grant DP109288. P.L.B. publishes with the permission of the ED of the Geological Survey of NSW. We appreciate helpful comments on the work provided by G. Clarke, K. Bull, J. Paterson, N. Campione, N. Daczko and J. S. Lackey.

Author information

Authors and Affiliations

Authors

Contributions

T.C, L.A.M., I.M and P.L.B initiated the project and contributed to the analysis of the data. J.C. completed the data collection and interpretation. All authors contributed to writing and reviewing the manuscript.

Corresponding author

Correspondence to Timothy Chapman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Jade Star Lackey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Plot of 206Pb/238U dates obtained by CA-TIMS.

Plotted with Isoplot 3.0 (Ref. 71). Weighted mean dates are shown and represented by the grey boxes. The ages included or precluded for the weighted mean calculations are displayed by black and white bars encompassing errors at 2σ.

Extended Data Fig. 2 Representative collated images of analysed zircon grains from the Wandsworth Volcanic Group and New England Batholith.

The top panel is reflected light images, the middle panel are incident light images and bottom panel is cathodoluminescence (CL) images. Individual samples are labelled.

Extended Data Fig. 3 Representative collated images of analysed zircon grains from the Wandsworth Volcanic Group and New England Batholith.

The top panel is reflected light images, the middle panel are incident light images and bottom panel is cathodoluminescence (CL) images. Individual samples are labelled.

Extended Data Fig. 4 Representative cathodoluminescence (CL) images of zircon. Zircon grains come from the Kings Plain Ignimbrite (19KP02), the Annalee Pyroclastics (01B) and the Weean Ignimbrite (19GI05).

Please insert a caption here.

Extended Data Fig. 5 Geological map of the southern New England Orogen. Map includes Cenozoic cover, displaying spatio-temporal relationships of magmatism and the Wandsworth Volcanic Group from c. 300–200 Ma.

Please insert a caption here.

Extended Data Fig. 6 Depth estimates.

(a) Histogram of exposed surface area of volcanic and pluton rocks along the eastern Australia margin during the Permian–Triassic. (b) Average Sr/Y ratios of volcanic or plutons rocks during the Permian–Triassic, uncertainty bounds encompass 1σ distribution.

Extended Data Table 1 Wandsworth Volcanic Group sample location and age summary

Supplementary information

Supplementary Data 1

CA-TIMS U–Pb zircon analysis for the Wandsworth Volcanic Group. Includes concordia plots of U–Pb CA-TIMS dates plotted with Isoplot 3.0 (ref. 71). Errors are at 2σ.

Supplementary Data 2

LA-ICPMS U–Pb zircon analysis of the Wandsworth Volcanic Group.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapman, T., Milan, L.A., Metcalfe, I. et al. Pulses in silicic arc magmatism initiate end-Permian climate instability and extinction. Nat. Geosci. 15, 411–416 (2022). https://doi.org/10.1038/s41561-022-00934-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00934-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing