Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fluocerite as a precursor to rare earth element fractionation in ore-forming systems

Abstract

Emerging renewable energy technologies and low-carbon transportation rely heavily on the unique optical and magnetic properties of the rare earth elements. The medium to heavy rare earth elements, neodymium to lutetium, are most sought by industry but are the least abundant in nature. Only a small proportion of known rare earth element deposits are enriched in these elements. Identifying additional sources of medium to heavy rare earth elements for resource exploration requires improved understanding of the mechanisms responsible for the formation of such highly fractionated deposits. Here we report the results of experiments demonstrating a mechanism that could lead to enrichment of medium to heavy rare earth elements in ore-forming hydrothermal systems. In our experiments, we simulated natural hydrothermal systems by heating a column containing apatite and fluorite through which we pumped a chloride-rich solution bearing rare earth elements. Analysis of our experiments shows that the fluoride mineral fluocerite can serve as a precursor phase that fractionates rare earth elements before it is subsequently converted to a thermodynamically more stable mineral. Our findings identify geological settings in which fluocerite is observed or predicted to occur as potential exploration targets for deposits enriched in medium to heavy rare earth elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Solution chemistry of the hydrothermal fluid after reacting with apatite at 250 °C.
Fig. 2: Scanning electron microscopy images demonstrating the difference in the apatite- and fluorite-mediated mechanisms of REE mineral deposition.
Fig. 3: Concentration of the REEs in the solids as a function of distance along a column after an experiment.
Fig. 4: Micro-beam X-ray fluorescence maps of the apatite/fluorite mixed column for La, Nd and Er.

Similar content being viewed by others

Data availability

All the data on which this manuscript is based are available to readers from the Supplementary Information. Source data are provided with this paper.

References

  1. Connelly, N. G., Damhus, T., Hartshorn, R. M. & Hutton, A. T. Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005 (Royal Society of Chemistry, 2005).

  2. Haxel, G. B., Hedrick, J. B. & Orris, G. J. Rare Earth Elements—Critical Resources for High Technology (US Geological Survey, 2002).

  3. Castor, S. B. & Hendrick, J. B. in Industrial Minerals and Rocks: Commodities, Markets, and Uses (eds Kogel, J. E. et al.) 769–792 (Society for Mining Mineralogy, 2006).

  4. Castor, S. B. The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. Can. Mineral. 46, 779–806 (2008).

    Article  Google Scholar 

  5. Moore, M., Chakhmouradian, A. R., Mariano, A. N. & Sidhu, R. Evolution of rare-earth mineralization in the Bear Lodge carbonatite, Wyoming: mineralogical and isotopic evidence. Ore Geol. Rev. 64, 499–521 (2015).

    Article  Google Scholar 

  6. Gysi, A. P. & Williams-Jones, A. E. Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: a reaction path model. Geochim. Cosmochim. Acta 122, 324–352 (2013).

    Article  Google Scholar 

  7. Salvi, S. & Williams-Jones, A. E. The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: evidence from fluid inclusions. Geochim. Cosmochim. Acta 54, 2403–2418 (1990).

    Article  Google Scholar 

  8. Chao, E. C. T., Back, J. M., Minkin, J. A. & Yinchen, R. Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REE Fe–Nb ore deposit, Inner Mongolia, P.R.C. Appl. Geochem. 7, 443–458 (1992).

    Article  Google Scholar 

  9. Deng, M. et al. REE mineralization in the Bayan Obo deposit, China: evidence from mineral paragenesis. Ore Geol. Rev. 91, 100–109 (2017).

    Article  Google Scholar 

  10. Sheard, E. R., Williams-Jones, A. E., Heiligmann, M., Pederson, C. & Trueman, D. L. Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Econ. Geol. 107, 81–104 (2012).

    Article  Google Scholar 

  11. Vasyukova, O. V. & Williams-Jones, A. E. Fluoride–silicate melt immiscibility and its role in REE ore formation: evidence from the Strange Lake rare metal deposit, Québec-Labrador, Canada. Geochim. Cosmochim. Acta 139, 110–130 (2014).

    Article  Google Scholar 

  12. Möller, V. & Williams-Jones, A. E. Magmatic and hydrothermal controls on the mineralogy of the basal zone, Nechalacho REE-Nb–Zr deposit, Canada. Econ. Geol. 112, 1823–1856 (2017).

    Article  Google Scholar 

  13. Li, M. Y. H., Zhou, M. F. & Williams-Jones, A. E. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi province, South China. Econ. Geol. 114, 541–568 (2019).

    Article  Google Scholar 

  14. Van Gosen, B. S. & Sengupta, D. in Reviews in Economic Geology (eds Verplanck, P. L. & Hitzman, M. W.) 81–100 (Society of Economic Geologists, 2016).

  15. Dai, S., Graham, I. T. & Ward, C. R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 159, 82–95 (2016).

    Article  Google Scholar 

  16. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–766 (1976).

    Article  Google Scholar 

  17. Kanazawa, Y. & Kamitani, M. Rare earth minerals and resources in the world. J. Alloy. Compd. 408–412, 1339–1343 (2006).

    Article  Google Scholar 

  18. Taggart, R. K., Hower, J. C., Dwyer, G. S. & Hsu-Kim, H. Trends in the rare earth element content of U.S.-based coal combustion fly ashes. Environ. Sci. Technol. 50, 5919–5926 (2016).

    Article  Google Scholar 

  19. Williams-Jones, A. E., Wollenberg, R. & Bodeving, S. Hydrothermal fractionation of the rare earth elements and the genesis of the Lofdal REE deposit, Namibia. In Symposium on Critical and Strategic Materials Proceedings (eds Simandl, G. J. & Neetz, M.) 125–130 (British Columbia Ministry of Energy and Mines, 2015).

  20. Richter, L., Diamond, L. W., Atanasova, P., Banks, D. A. & Gutzmer, J. Hydrothermal formation of heavy rare earth element (HREE)–xenotime deposits at 100 °C in a sedimentary basin. Geology 46, 263–266 (2018).

    Article  Google Scholar 

  21. Cook, N. J. et al. Mineral chemistry of rare earth element (REE) mineralization, Browns Ranges, Western Australia. Lithos 172–173, 192–213 (2013).

    Article  Google Scholar 

  22. Banks, D. A., Yardley, B. W. D., Campbell, A. R. & Jarvis, K. E. REE composition of an aqueous magmatic fluid: a fluid inclusion study from the Capitan Pluton, New Mexico, U.S.A. Chem. Geol. 113, 259–272 (1994).

    Article  Google Scholar 

  23. Winter, J. D. Principles of Igneous and Metamorphic Petrology (Pearson, 2013).

  24. Nabyl, Z. et al. A window in the course of alkaline magma differentiation conducive to immiscible REE-rich carbonatites. Geochim. Cosmochim. Acta 282, 297–323 (2020).

    Article  Google Scholar 

  25. Migdisov, A., Williams-Jones, A. E., Brugger, J. & Caporuscio, F. A. Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem. Geol. 439, 13–42 (2016).

    Article  Google Scholar 

  26. Anenburg, M., Mavrogenes, J. A., Frigo, C. & Wall, F. Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Sci. Adv. 6, eabb6570 (2020).

    Article  Google Scholar 

  27. Vasyukova, O. V. & Williams-Jones, A. E. The evolution of immiscible silicate and fluoride melts: implications for REE ore-genesis. Geochim. Cosmochim. Acta 172, 205–224 (2016).

    Article  Google Scholar 

  28. Siegel, K., Vasyukova, O. V. & Williams-Jones, A. E. Magmatic evolution and controls on rare metal-enrichment of the Strange Lake A-type peralkaline granitic pluton, Québec-Labrador. Lithos 308–309, 34–52 (2018).

    Article  Google Scholar 

  29. Vasyukova, O. V. & Williams-Jones, A. E. Tracing the evolution of a fertile REE granite by modelling amphibole-melt partitioning, the Strange Lake story. Chem. Geol. 514, 79–89 (2019).

    Article  Google Scholar 

  30. Salvi, S. & Williams-Jones, A. E. The role of hydrothermal processes in concentrating HFSE in the Strange Lake peralkaline complex, northeastern Canada. Geochim. Cosmochim. Acta 60, 1917–1932 (1996).

    Article  Google Scholar 

  31. Smith, M. et al. The origin of secondary heavy rare earth element enrichment in carbonatites: constraints from the evolution of the Huanglongpu district, China. Lithos 308–309, 65–82 (2018).

    Article  Google Scholar 

  32. Williams-Jones, A. E., Samson, I. M. & Olivo, G. R. The genesis of hydrothermal fluorite–REE deposits in the Gallinas Mountains, New Mexico. Econ. Geol. 95, 327–341 (2000).

    Article  Google Scholar 

  33. Migdisov, A., Williams-Jones, A. E. & Wagner, T. An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 °C. Geochim. Cosmochim. Acta 73, 7087–7109 (2009).

    Article  Google Scholar 

  34. Migdisov, A. & Williams-Jones, A. E. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Miner. Depos. 49, 987–997 (2014).

    Article  Google Scholar 

  35. Migdisov, A. et al. A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250 °C. Geochim. Cosmochim. Acta 222, 130–145 (2018).

    Article  Google Scholar 

  36. Williams-Jones, A. E., Migdisov, A. & Samson, I. M. Hydrothermal mobilisation of the rare earth elements—a tale of ‘ceria’ and ‘yttria’. Elements 8, 355–360 (2012).

    Article  Google Scholar 

  37. Migdisov, A. & Williams-Jones, A. E. A spectrophotometric study of neodymium(III) complexation in chloride solutions. Geochim. Cosmochim. Acta 66, 4311–4323 (2002).

    Article  Google Scholar 

  38. Migdisov, A. & Williams-Jones, A. E. A spectrophotometric study of Nd(III), Sm(III) and Er(III) complexation in sulfate-bearing solutions at elevated temperatures. Geochim. Cosmochim. Acta 72, 5291–5303 (2008).

    Article  Google Scholar 

  39. Migdisov, A., Reukov, V. V. & Williams-Jones, A. E. A spectrophotometric study of neodymium(III) complexation in sulfate solutions at elevated temperatures. Geochim. Cosmochim. Acta 70, 983–992 (2006).

    Article  Google Scholar 

  40. Bunzli, J.-C. G. & McGill, I. in Ullmann’s Encyclopedia of Industrial Chemistry 1–51 (John Wiley and Sons, 2018).

  41. Migdisov, A., Guo, X., Nisbet, H., Xu, H. & Williams-Jones, A. E. Fractionation of REE, U, and Th in natural ore-forming hydrothermal systems: thermodynamic modeling. J. Chem. Thermodyn. 128, 305–319 (2018).

    Article  Google Scholar 

  42. Veksler, I. V. et al. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim. Cosmochim. Acta 79, 20–40 (2012).

    Article  Google Scholar 

  43. Martin, L. H. J., Schmidt, M. W., Mattsson, H. B. & Guenther, D. Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1–3 GPa. J. Petrol. 54, 2301–2338 (2013).

    Article  Google Scholar 

  44. Lahti, S. I. & Suominen, V. Occurrence, crystallography and chemistry of the fluocerite–bastnaesite–cerianite intergrowth from the Fjälskär granite, southwestern Finland. Bull. Geol. Soc. Finl. 60, 45–53 (2017).

    Article  Google Scholar 

  45. Holtstam, D. & Andersson, U. B. The REE minerals of the bastnäs-type deposits, south-central Sweden. Can. Mineral. 45, 1073–1114 (2007).

    Article  Google Scholar 

  46. Beukes, G. J., De Bruiyn, H. & Van Der Westhuizen, W. A. Fluocerite and associated minerals from the Baviaanskranz granite pegmatite near Kakamas, South Africa. South Afr. J. Geol. 94, 313–320 (1991).

    Google Scholar 

  47. Hetherington, C. J., Harlov, D. E. & Budzyń, B. Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Mineral. Petrol. 99, 165–184 (2010).

    Article  Google Scholar 

  48. Cherniak, D. J. Pb and rare earth element diffusion in xenotime. Lithos 88, 1–14 (2006).

    Article  Google Scholar 

  49. Dorozhkin, S. V. Dissolution mechanism of calcium apatites in acids: a review of literature. World J. Methodol. 2, 1–17 (2012).

    Article  Google Scholar 

  50. Simmons, S. F. & Brown, K. L. Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit. Science 314, 288–292 (2006).

    Article  Google Scholar 

  51. Zhao, J., Brugger, J. & Pring, A. Mechanism and kinetics of hydrothermal replacement of magnetite by hematite. Geosci. Front. 10, 29–41 (2019).

    Article  Google Scholar 

  52. Putnis, A., Spencer, C. J. & Raimondo, T. Timescales of geological processes: preface. Geosci. Front. 10, 1–3 (2019).

    Article  Google Scholar 

  53. von Quadt, A. et al. Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology 39, 731–734 (2011).

    Article  Google Scholar 

  54. Smith, M. P., Henderson, P. & Campbell, L. S. Fractionation of the REE during hydrothermal processes: constraints from the Bayan Obo Fe–REE–Nb deposit, Inner Mongolia, China. Geochim. Cosmochim. Acta 64, 3141–3160 (2000).

    Article  Google Scholar 

  55. Voigt, M., Rodriguez-Blanco, J. D., Vallina, B., Benning, L. G. & Oelkers, E. H. An experimental study of hydroxylbastnasite solubility in aqueous solutions at 25 °C. Chem. Geol. 430, 70–77 (2016).

    Article  Google Scholar 

  56. Gysi, A. P., Harlov, D. & Miron, G. D. The solubility of monazite (CePO4), SmPO4, and GdPO4 in aqueous solutions from 100 to 250 °C. Geochim. Cosmochim. Acta 242, 143–164 (2018).

    Article  Google Scholar 

  57. Gysi, A. P., Williams-Jones, A. E. & Harlov, D. The solubility of xenotime-(Y) and other HREE phosphates (DyPO4, ErPO4 and YbPO4) in aqueous solutions from 100 to 250 °C and psat. Chem. Geol. 401, 83–95 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

Research presented in this article was supported both by the National Energy Technology Laboratory under project number FE-810-17-FY17 and by the Laboratory Directed Research and Development programme of Los Alamos National Laboratory under project number 20190057DR. A.C.S. and X.G. acknowledge the support by the US Department of Energy Office of Nuclear Energy grants DE-NE0008582 and DE-NE0008689.

Author information

Authors and Affiliations

Authors

Contributions

A.M. and H.B. conceived the research. A.C.S. developed the experimental method and conducted experiments. K.S. and K.G.M. performed scanning electron microscopy and μXRF studies, respectively. All co-authors participated in discussions, interpretation of the data and writing of the manuscript.

Corresponding author

Correspondence to Andrew C. Strzelecki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks John Mavrogenes, Kathryn Goodenough and Kenzo Sanematsu for their contribution to the peer review of this work. Primary Handling Editors: Tamara Goldin and Simon Harold, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods and thermodynamic calculation descriptions, Results, Discussion, Figs. 1–9 and Table 1.

Supplementary Data

The source data that were used to produce the various figures in the main text and supplementary text.

Source data

Source Data Fig. 1

Data used to generate Fig. 1a in the main text and data used to generate Fig. 1b in the main text.

Source Data Fig. 3

Data used to generate Fig. 3a,b in the main text and data used to generate Fig. 3c,d in the main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strzelecki, A.C., Migdisov, A., Boukhalfa, H. et al. Fluocerite as a precursor to rare earth element fractionation in ore-forming systems. Nat. Geosci. 15, 327–333 (2022). https://doi.org/10.1038/s41561-022-00921-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00921-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing