Abstract
Sea spray aerosols (SSAs) make up a substantial proportion of aerosols in the global atmosphere and, especially when considering marine haze and cloud layers, can have a large impact on cloud formation and atmospheric radiative balance. Although SSA has the highest cloud condensation nuclei (CCN) activation potential, the majority of its population, residing in sub-micrometre sizes, are often obscured by non-sea-spray CCN. Quantification of SSA-derived CCN is fundamental in understanding the radiative budget. Recent approaches to estimate the sub-micrometre SSA employed a free-monomodal lognormal analysis that depicts the global oceanic CCN population comprising less than 30% SSA. Here we derive SSA distributions from a unique five-year dataset of aerosol microphysics and hygroscopicity (water uptake ability) over Atlantic waters. This approach utilizes the distinctive ultra-high hygroscopicity signature of inorganic sea salt and is able to identify the sub-micrometre sea spray down to 35 nm diameter with high time and size resolution. In stark contrast to previous studies, the hygroscopicity coupled multimodal fitting analysis yields SSA-derived CCN as much as 500% in excess of estimates produced using the free-monomodal approach. Our results suggest the contribution of SSA to global CCN, particularly Aitken mode SSA, has probably been overlooked.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Arctic warming by abundant fine sea salt aerosols from blowing snow
Nature Geoscience Open Access 04 September 2023
-
Recent Progress in Atmospheric Chemistry Research in China: Establishing a Theoretical Framework for the “Air Pollution Complex”
Advances in Atmospheric Sciences Open Access 28 April 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
The meteorological parameters can be found at https://www.met.ie/. The monthly global reanalysis of the distribution of U10 can be found through https://doi.org/10.24381/cds.bd0915c6. All data are available in the repository: https://doi.org/10.17632/gjdd5r4ywf.1. Source data are provided with this paper.
Code availability
The R codes used to analyse the data are available upon reasonable request.
References
de Leeuw, G. et al. Production flux of sea spray aerosol. Rev. Geophys. 49, 2010RG000349 (2011).
O’Dowd, C. & de Leeuw, G. Marine aerosol production: a review of the current knowledge. Phil. Trans. R. Soc. A 365, 1753–1774 (2007).
Carslaw, K. et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503, 67–71 (2013).
Partanen, A.-I. et al. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state. Atmos. Chem. Phys. 14, 11731–11752 (2014).
Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B. & Lin, J.-T. Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 11, 3137–3157 (2011).
Tsigaridis, K., Koch, D. & Menon, S. Uncertainties and importance of sea spray composition on aerosol direct and indirect effects. J. Geophys. Res. Atmos. 118, 220–235 (2013).
Regayre, L. A. et al. The value of remote marine aerosol measurements for constraining radiative forcing uncertainty. Atmos. Chem. Phys. 20, 10063–10072 (2020).
Bian, H. et al. Observationally constrained analysis of sea salt aerosol in the marine atmosphere. Atmos. Chem. Phys. 19, 10773–10785 (2019).
Croft, B. et al. Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region. Atmos. Chem. Phys. 21, 1889–1916 (2021).
Twohy, C. H. & Anderson, J. R. Droplet nuclei in non-precipitating clouds: composition and size matter. Environ. Res. Lett. 3, 045002 (2008).
Murphy, D. M. et al. Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature 392, 62–65 (1998).
Asmi, E. et al. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation. Atmos. Chem. Phys. 10, 4253–4271 (2010).
Modini, R. L. et al. Primary marine aerosol–cloud interactions off the coast of California. J. Geophys. Res. Atmos. 120, 4282–4303 (2015).
Quinn, P. K., Coffman, D. J., Johnson, J. E., Upchurch, L. M. & Bates, T. S. Small fraction of marine cloud condensation nuclei made up of sea spray aerosol. Nat. Geosci. 10, 674–679 (2017).
Saliba, G. et al. Factors driving the seasonal and hourly variability of sea-spray aerosol number in the North Atlantic. Proc. Natl Acad. Sci. USA 116, 20309–20314 (2019).
Sanchez, K. J. et al. Linking marine phytoplankton emissions, meteorological processes and downwind particle properties with FLEXPART. Atmos. Chem. Phys. 21, 831–851 (2021).
Zheng, G. et al. Marine boundary layer aerosol in the eastern North Atlantic: seasonal variations and key controlling processes. Atmos. Chem. Phys. 18, 17615–17635 (2018).
Quinn, P. K. et al. Seasonal variations in western North Atlantic remote marine aerosol properties. J. Geophys. Res. Atmos. 124, 14240–14261 (2019).
Saliba, G. et al. Seasonal differences and variability of concentrations, chemical composition, and cloud condensation nuclei of marine aerosol over the North Atlantic. J. Geophys. Res. Atmos 125, e2020JD033145 (2020).
Schmale, J. et al. Overview of the Antarctic circumnavigation expedition: study of preindustrial-like aerosols and their climate effects (ACE-SPACE). Bull. Am. Meteorol. Soc. 100, 2260–2283 (2019).
Hartery, S. et al. Constraining the surface flux of sea spray particles from the Southern Ocean. J. Geophys. Res. Atmos 125, e2019JD032026 (2020).
O’Dowd, C., Smith, M. H., Consterdine, I. E. & Lowe, J. A. Marine aerosol, sea-salt, and the marine sulphur cycle: a short review. Atmos. Environ. 31, 73–80 (1997).
Swietlicki, E. et al. Hygroscopic properties of aerosol particles in the north-eastern Atlantic during ACE-2. Tellus B 52, 201–227 (2000).
Zhou, J. et al. Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer. J. Geophys. Res. Atmos. 106, 32111–32123 (2001).
Cravigan, L. T., Ristovski, Z., Modini, R. L., Keywood, M. D. & Gras, J. L. Observation of sea-salt fraction in sub-100 nm diameter particles at Cape Grim. J. Geophys. Res. Atmos. 120, 1848–1864 (2015).
Zieger, P. et al. Revising the hygroscopicity of inorganic sea salt particles. Nat. Commun. 8, 110 (2017).
Ovadnevaite, J. et al. Submicron NE Atlantic marine aerosol chemical composition and abundance: seasonal trends and air mass categorization. J. Geophys. Res. Atmos. 119, 11850–11863 (2014).
O’Dowd, C. et al. Biogenically driven organic contribution to marine aerosol. Nature 431, 676–680 (2004).
Swietlicki, E. et al. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review. Tellus B 60, 432–469 (2008).
Xu, W. et al. Seasonal trends of aerosol hygroscopicity and mixing state in clean marine and polluted continental air masses over the northeast Atlantic. J. Geophys. Res. Atmos. 126, e2020JD033851 (2021).
Tang, I. N., Tridico, A. C. & Fung, K. H. Thermodynamic and optical properties of sea salt aerosols. J. Geophys. Res. Atmos. 102, 23269–23275 (1997).
Petters, M. D. & Kreidenweis, S. M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7, 1961–1971 (2007).
Su, H. et al. Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation. Atmos. Chem. Phys. 10, 7489–7503 (2010).
Gysel, M., McFiggans, G. & Coe, H. Inversion of tandem differential mobility analyser (TDMA) measurements. J. Aerosol Sci. 40, 134–151 (2009).
Grythe, H., Ström, J., Krejci, R., Quinn, P. & Stohl, A. A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmos. Chem. Phys. 14, 1277–1297 (2014).
Fuentes, E., Coe, H., Green, D., de Leeuw, G. & McFiggans, G. Laboratory-generated primary marine aerosol via bubble-bursting and atomization. Atmos. Meas. Tech. 3, 141–162 (2010).
Schwier, A. N. et al. Primary marine aerosol physical flux and chemical composition during a nutrient enrichment experiment in mesocosms in the Mediterranean Sea. Atmos. Chem. Phys. 17, 14645–14660 (2017).
Ovadnevaite, J. et al. A sea spray aerosol flux parameterization encapsulating wave state. Atmos. Chem. Phys. 14, 1837–1852 (2014).
Gong, S. L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Glob. Biogeochem. Cycles 17, 1097 (2003).
Pierce, J. R. & Adams, P. J. Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt. J. Geophys. Res. 111, D06203 (2006).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Callaghan, A., de Leeuw, G., Cohen, L. & O'Dowd, C. D. Relationship of oceanic whitecap coverage to wind speed and wind history. Geophys. Res. Lett. 35, L23609 (2008).
Fossum, K. N. et al. Sea-spray regulates sulfate cloud droplet activation over oceans. NPJ Clim. Atmos. Sci. 3, 14 (2020).
O’Connor, T. C., Jennings, S. G. & O’Dowd, C. Highlights of fifty years of atmospheric aerosol research at Mace Head. Atmos. Res. 90, 338–355 (2008).
O’Dowd, C. et al. Do anthropogenic, continental or coastal aerosol sources impact on a marine aerosol signature at Mace Head? Atmos. Chem. Phys. 14, 10687–10704 (2014).
Beddows, D. C. S., Dall’osto, M. & Harrison, R. M. An enhanced procedure for the merging of atmospheric particle size distribution data measured using electrical mobility and time-of-flight analysers. Aerosol Sci. Technol. 44, 930–938 (2010).
Khlystov, A., Stanier, C. & Pandis, S. N. An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol. Aerosol Sci. Technol. 38, 229–238 (2004).
DeCarlo, P. F. et al. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 78, 8281–8289 (2006).
Ovadnevaite, J. et al. On the effect of wind speed on submicron sea salt mass concentrations and source fluxes. J. Geophys. Res. Atmos. 117, D16201 (2012).
Petzold, A. & Schönlinner, M. Multi-angle absorption photometry—a new method for the measurement of aerosol light absorption and atmospheric black carbon. J. Aerosol Sci. 35, 421–441 (2004).
Liu, B. Y. H. et al. The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols. Atmos. Environ. 12, 99–104 (1978).
Tang, M. et al. A review of experimental techniques for aerosol hygroscopicity studies. Atmos. Chem. Phys. 19, 12631–12686 (2019).
Bialek, J., Dall’Osto, M., Monahan, C., Beddows, D. & O’Dowd, C. On the contribution of organics to the North East Atlantic aerosol number concentration. Environ. Res. Lett. 7, 044013 (2012).
Duplissy, J. et al. Intercomparison study of six HTDMAs: results and recommendations. Atmos. Meas. Tech. 2, 363–378 (2009).
Fuentes, E., Coe, H., Green, D., de Leeuw, G. & McFiggans, G. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol—part 1: source fluxes. Atmos. Chem. Phys. 10, 9295–9317 (2010).
Modini, R. L., Harris, B. & Ristovski, Z. D. The organic fraction of bubble-generated, accumulation mode sea spray aerosol (SSA). Atmos. Chem. Phys. 10, 2867–2877 (2010).
Schwier, A. N. et al. Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: correlations to seawater chlorophyll a from a mesocosm study. Atmos. Chem. Phys. 15, 7961–7976 (2015).
Prather, K. A. et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl Acad. Sci. USA 110, 7550–7555 (2013).
Acknowledgements
We thank J. Bialek for operating HTDMA at MHD from 2008 to 2014. The work was supported by the Science Foundation Ireland (Research Centre for Energy, Climate and Marine Research and Innovation, SFI Spokes Award 14/SP/2740 (Ocean Monitoring)); Environmental Protection Agency Ireland (No. AEROSOURCE, 2016-CCRP-MS-31); the National Natural Science Foundation of China (No. 41925015); the Chinese Academy of Sciences (No. XDB40000000 and No. ZDBS-LY-DQC001); the Cross Innovative Team fund from the State Key Laboratory of Loess and Quaternary Geology (No. SKLLQGTD1801). The Chinese Scholarship Council (No. 201706310154) is acknowledged for the financial support for W.X.
Author information
Authors and Affiliations
Contributions
All the authors contributed to the work presented in this paper. W.X., J.O., R.-J.H., D.C. and C.O'D. designed the study. J.O. conducted the AMS measurement and D.C. conducted aerosol measurement. W.X., K.N.F., J.O., D.C., C.L., R.-J.H. and C.O'D. analysed the data and drafted the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks Robin Modini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Kyle Frischkorn and James Super, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Table 1, Discussion and Figs. 1–15.
Source data
Source Data Fig. 1
Statistical data for Fig. 1.
Source Data Fig. 2
Statistical data for Fig. 2.
Source Data Fig. 3
Statistical data for Fig. 3.
Rights and permissions
About this article
Cite this article
Xu, W., Ovadnevaite, J., Fossum, K.N. et al. Sea spray as an obscured source for marine cloud nuclei. Nat. Geosci. 15, 282–286 (2022). https://doi.org/10.1038/s41561-022-00917-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-022-00917-2
This article is cited by
-
Arctic warming by abundant fine sea salt aerosols from blowing snow
Nature Geoscience (2023)
-
Recent Progress in Atmospheric Chemistry Research in China: Establishing a Theoretical Framework for the “Air Pollution Complex”
Advances in Atmospheric Sciences (2023)