Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sea spray as an obscured source for marine cloud nuclei

Abstract

Sea spray aerosols (SSAs) make up a substantial proportion of aerosols in the global atmosphere and, especially when considering marine haze and cloud layers, can have a large impact on cloud formation and atmospheric radiative balance. Although SSA has the highest cloud condensation nuclei (CCN) activation potential, the majority of its population, residing in sub-micrometre sizes, are often obscured by non-sea-spray CCN. Quantification of SSA-derived CCN is fundamental in understanding the radiative budget. Recent approaches to estimate the sub-micrometre SSA employed a free-monomodal lognormal analysis that depicts the global oceanic CCN population comprising less than 30% SSA. Here we derive SSA distributions from a unique five-year dataset of aerosol microphysics and hygroscopicity (water uptake ability) over Atlantic waters. This approach utilizes the distinctive ultra-high hygroscopicity signature of inorganic sea salt and is able to identify the sub-micrometre sea spray down to 35 nm diameter with high time and size resolution. In stark contrast to previous studies, the hygroscopicity coupled multimodal fitting analysis yields SSA-derived CCN as much as 500% in excess of estimates produced using the free-monomodal approach. Our results suggest the contribution of SSA to global CCN, particularly Aitken mode SSA, has probably been overlooked.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Size-resolved hygroscopicity, number size distribution and chemical composition for low-sea-salt and high-sea-salt events.
Fig. 2: U10 versus NSSA and ΔNCCN.
Fig. 3: Global estimation of the percentage difference of SSA NCCN using hygroscopicity and free-monomodal parameterization in the global ocean.

Data availability

The meteorological parameters can be found at https://www.met.ie/. The monthly global reanalysis of the distribution of U10 can be found through https://doi.org/10.24381/cds.bd0915c6. All data are available in the repository: https://doi.org/10.17632/gjdd5r4ywf.1. Source data are provided with this paper.

Code availability

The R codes used to analyse the data are available upon reasonable request.

References

  1. de Leeuw, G. et al. Production flux of sea spray aerosol. Rev. Geophys. 49, 2010RG000349 (2011).

    Article  Google Scholar 

  2. O’Dowd, C. & de Leeuw, G. Marine aerosol production: a review of the current knowledge. Phil. Trans. R. Soc. A 365, 1753–1774 (2007).

    Article  Google Scholar 

  3. Carslaw, K. et al. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503, 67–71 (2013).

    Article  Google Scholar 

  4. Partanen, A.-I. et al. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state. Atmos. Chem. Phys. 14, 11731–11752 (2014).

    Article  Google Scholar 

  5. Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B. & Lin, J.-T. Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 11, 3137–3157 (2011).

    Article  Google Scholar 

  6. Tsigaridis, K., Koch, D. & Menon, S. Uncertainties and importance of sea spray composition on aerosol direct and indirect effects. J. Geophys. Res. Atmos. 118, 220–235 (2013).

    Article  Google Scholar 

  7. Regayre, L. A. et al. The value of remote marine aerosol measurements for constraining radiative forcing uncertainty. Atmos. Chem. Phys. 20, 10063–10072 (2020).

    Article  Google Scholar 

  8. Bian, H. et al. Observationally constrained analysis of sea salt aerosol in the marine atmosphere. Atmos. Chem. Phys. 19, 10773–10785 (2019).

    Article  Google Scholar 

  9. Croft, B. et al. Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region. Atmos. Chem. Phys. 21, 1889–1916 (2021).

    Article  Google Scholar 

  10. Twohy, C. H. & Anderson, J. R. Droplet nuclei in non-precipitating clouds: composition and size matter. Environ. Res. Lett. 3, 045002 (2008).

    Article  Google Scholar 

  11. Murphy, D. M. et al. Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature 392, 62–65 (1998).

    Article  Google Scholar 

  12. Asmi, E. et al. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation. Atmos. Chem. Phys. 10, 4253–4271 (2010).

    Article  Google Scholar 

  13. Modini, R. L. et al. Primary marine aerosol–cloud interactions off the coast of California. J. Geophys. Res. Atmos. 120, 4282–4303 (2015).

    Article  Google Scholar 

  14. Quinn, P. K., Coffman, D. J., Johnson, J. E., Upchurch, L. M. & Bates, T. S. Small fraction of marine cloud condensation nuclei made up of sea spray aerosol. Nat. Geosci. 10, 674–679 (2017).

    Article  Google Scholar 

  15. Saliba, G. et al. Factors driving the seasonal and hourly variability of sea-spray aerosol number in the North Atlantic. Proc. Natl Acad. Sci. USA 116, 20309–20314 (2019).

    Article  Google Scholar 

  16. Sanchez, K. J. et al. Linking marine phytoplankton emissions, meteorological processes and downwind particle properties with FLEXPART. Atmos. Chem. Phys. 21, 831–851 (2021).

  17. Zheng, G. et al. Marine boundary layer aerosol in the eastern North Atlantic: seasonal variations and key controlling processes. Atmos. Chem. Phys. 18, 17615–17635 (2018).

    Article  Google Scholar 

  18. Quinn, P. K. et al. Seasonal variations in western North Atlantic remote marine aerosol properties. J. Geophys. Res. Atmos. 124, 14240–14261 (2019).

    Article  Google Scholar 

  19. Saliba, G. et al. Seasonal differences and variability of concentrations, chemical composition, and cloud condensation nuclei of marine aerosol over the North Atlantic. J. Geophys. Res. Atmos 125, e2020JD033145 (2020).

    Article  Google Scholar 

  20. Schmale, J. et al. Overview of the Antarctic circumnavigation expedition: study of preindustrial-like aerosols and their climate effects (ACE-SPACE). Bull. Am. Meteorol. Soc. 100, 2260–2283 (2019).

    Article  Google Scholar 

  21. Hartery, S. et al. Constraining the surface flux of sea spray particles from the Southern Ocean. J. Geophys. Res. Atmos 125, e2019JD032026 (2020).

    Article  Google Scholar 

  22. O’Dowd, C., Smith, M. H., Consterdine, I. E. & Lowe, J. A. Marine aerosol, sea-salt, and the marine sulphur cycle: a short review. Atmos. Environ. 31, 73–80 (1997).

    Article  Google Scholar 

  23. Swietlicki, E. et al. Hygroscopic properties of aerosol particles in the north-eastern Atlantic during ACE-2. Tellus B 52, 201–227 (2000).

    Article  Google Scholar 

  24. Zhou, J. et al. Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer. J. Geophys. Res. Atmos. 106, 32111–32123 (2001).

    Article  Google Scholar 

  25. Cravigan, L. T., Ristovski, Z., Modini, R. L., Keywood, M. D. & Gras, J. L. Observation of sea-salt fraction in sub-100 nm diameter particles at Cape Grim. J. Geophys. Res. Atmos. 120, 1848–1864 (2015).

    Article  Google Scholar 

  26. Zieger, P. et al. Revising the hygroscopicity of inorganic sea salt particles. Nat. Commun. 8, 110 (2017).

    Article  Google Scholar 

  27. Ovadnevaite, J. et al. Submicron NE Atlantic marine aerosol chemical composition and abundance: seasonal trends and air mass categorization. J. Geophys. Res. Atmos. 119, 11850–11863 (2014).

    Article  Google Scholar 

  28. O’Dowd, C. et al. Biogenically driven organic contribution to marine aerosol. Nature 431, 676–680 (2004).

    Article  Google Scholar 

  29. Swietlicki, E. et al. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review. Tellus B 60, 432–469 (2008).

    Article  Google Scholar 

  30. Xu, W. et al. Seasonal trends of aerosol hygroscopicity and mixing state in clean marine and polluted continental air masses over the northeast Atlantic. J. Geophys. Res. Atmos. 126, e2020JD033851 (2021).

    Google Scholar 

  31. Tang, I. N., Tridico, A. C. & Fung, K. H. Thermodynamic and optical properties of sea salt aerosols. J. Geophys. Res. Atmos. 102, 23269–23275 (1997).

    Article  Google Scholar 

  32. Petters, M. D. & Kreidenweis, S. M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7, 1961–1971 (2007).

    Article  Google Scholar 

  33. Su, H. et al. Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation. Atmos. Chem. Phys. 10, 7489–7503 (2010).

    Article  Google Scholar 

  34. Gysel, M., McFiggans, G. & Coe, H. Inversion of tandem differential mobility analyser (TDMA) measurements. J. Aerosol Sci. 40, 134–151 (2009).

    Article  Google Scholar 

  35. Grythe, H., Ström, J., Krejci, R., Quinn, P. & Stohl, A. A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmos. Chem. Phys. 14, 1277–1297 (2014).

    Article  Google Scholar 

  36. Fuentes, E., Coe, H., Green, D., de Leeuw, G. & McFiggans, G. Laboratory-generated primary marine aerosol via bubble-bursting and atomization. Atmos. Meas. Tech. 3, 141–162 (2010).

    Article  Google Scholar 

  37. Schwier, A. N. et al. Primary marine aerosol physical flux and chemical composition during a nutrient enrichment experiment in mesocosms in the Mediterranean Sea. Atmos. Chem. Phys. 17, 14645–14660 (2017).

    Article  Google Scholar 

  38. Ovadnevaite, J. et al. A sea spray aerosol flux parameterization encapsulating wave state. Atmos. Chem. Phys. 14, 1837–1852 (2014).

    Article  Google Scholar 

  39. Gong, S. L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Glob. Biogeochem. Cycles 17, 1097 (2003).

    Article  Google Scholar 

  40. Pierce, J. R. & Adams, P. J. Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt. J. Geophys. Res. 111, D06203 (2006).

    Article  Google Scholar 

  41. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  42. Callaghan, A., de Leeuw, G., Cohen, L. & O'Dowd, C. D. Relationship of oceanic whitecap coverage to wind speed and wind history. Geophys. Res. Lett. 35, L23609 (2008).

    Article  Google Scholar 

  43. Fossum, K. N. et al. Sea-spray regulates sulfate cloud droplet activation over oceans. NPJ Clim. Atmos. Sci. 3, 14 (2020).

    Article  Google Scholar 

  44. O’Connor, T. C., Jennings, S. G. & O’Dowd, C. Highlights of fifty years of atmospheric aerosol research at Mace Head. Atmos. Res. 90, 338–355 (2008).

    Article  Google Scholar 

  45. O’Dowd, C. et al. Do anthropogenic, continental or coastal aerosol sources impact on a marine aerosol signature at Mace Head? Atmos. Chem. Phys. 14, 10687–10704 (2014).

    Article  Google Scholar 

  46. Beddows, D. C. S., Dall’osto, M. & Harrison, R. M. An enhanced procedure for the merging of atmospheric particle size distribution data measured using electrical mobility and time-of-flight analysers. Aerosol Sci. Technol. 44, 930–938 (2010).

    Article  Google Scholar 

  47. Khlystov, A., Stanier, C. & Pandis, S. N. An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol. Aerosol Sci. Technol. 38, 229–238 (2004).

    Article  Google Scholar 

  48. DeCarlo, P. F. et al. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 78, 8281–8289 (2006).

    Article  Google Scholar 

  49. Ovadnevaite, J. et al. On the effect of wind speed on submicron sea salt mass concentrations and source fluxes. J. Geophys. Res. Atmos. 117, D16201 (2012).

    Article  Google Scholar 

  50. Petzold, A. & Schönlinner, M. Multi-angle absorption photometry—a new method for the measurement of aerosol light absorption and atmospheric black carbon. J. Aerosol Sci. 35, 421–441 (2004).

    Article  Google Scholar 

  51. Liu, B. Y. H. et al. The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols. Atmos. Environ. 12, 99–104 (1978).

    Article  Google Scholar 

  52. Tang, M. et al. A review of experimental techniques for aerosol hygroscopicity studies. Atmos. Chem. Phys. 19, 12631–12686 (2019).

    Article  Google Scholar 

  53. Bialek, J., Dall’Osto, M., Monahan, C., Beddows, D. & O’Dowd, C. On the contribution of organics to the North East Atlantic aerosol number concentration. Environ. Res. Lett. 7, 044013 (2012).

    Article  Google Scholar 

  54. Duplissy, J. et al. Intercomparison study of six HTDMAs: results and recommendations. Atmos. Meas. Tech. 2, 363–378 (2009).

    Article  Google Scholar 

  55. Fuentes, E., Coe, H., Green, D., de Leeuw, G. & McFiggans, G. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol—part 1: source fluxes. Atmos. Chem. Phys. 10, 9295–9317 (2010).

    Article  Google Scholar 

  56. Modini, R. L., Harris, B. & Ristovski, Z. D. The organic fraction of bubble-generated, accumulation mode sea spray aerosol (SSA). Atmos. Chem. Phys. 10, 2867–2877 (2010).

    Article  Google Scholar 

  57. Schwier, A. N. et al. Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: correlations to seawater chlorophyll a from a mesocosm study. Atmos. Chem. Phys. 15, 7961–7976 (2015).

    Article  Google Scholar 

  58. Prather, K. A. et al. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl Acad. Sci. USA 110, 7550–7555 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Bialek for operating HTDMA at MHD from 2008 to 2014. The work was supported by the Science Foundation Ireland (Research Centre for Energy, Climate and Marine Research and Innovation, SFI Spokes Award 14/SP/2740 (Ocean Monitoring)); Environmental Protection Agency Ireland (No. AEROSOURCE, 2016-CCRP-MS-31); the National Natural Science Foundation of China (No. 41925015); the Chinese Academy of Sciences (No. XDB40000000 and No. ZDBS-LY-DQC001); the Cross Innovative Team fund from the State Key Laboratory of Loess and Quaternary Geology (No. SKLLQGTD1801). The Chinese Scholarship Council (No. 201706310154) is acknowledged for the financial support for W.X.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the work presented in this paper. W.X., J.O., R.-J.H., D.C. and C.O'D. designed the study. J.O. conducted the AMS measurement and D.C. conducted aerosol measurement. W.X., K.N.F., J.O., D.C., C.L., R.-J.H. and C.O'D. analysed the data and drafted the paper.

Corresponding authors

Correspondence to Ru-Jin Huang, Darius Ceburnis or Colin O’Dowd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Robin Modini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Kyle Frischkorn and James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Discussion and Figs. 1–15.

Source data

Source Data Fig. 1

Statistical data for Fig. 1.

Source Data Fig. 2

Statistical data for Fig. 2.

Source Data Fig. 3

Statistical data for Fig. 3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Ovadnevaite, J., Fossum, K.N. et al. Sea spray as an obscured source for marine cloud nuclei. Nat. Geosci. 15, 282–286 (2022). https://doi.org/10.1038/s41561-022-00917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00917-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing