Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycling


The rise of atmospheric oxygen during the Great Oxidation Event some 2.4 billion years ago was a defining transition in the evolution of global biogeochemical cycles and life on Earth. However, mild oxidative continental weathering and the development of ocean oxygen oases occurred several hundred million years before the Great Oxidation Event. The Great Oxidation Event thus represents a tipping point, whereby primary productivity and O2 production overwhelmed the input of reduced species that consume O2, and its timing is determined by the input of phosphate, the major limiting nutrient, and the dynamics of the solid Earth. Here, we determine the phase partitioning of phosphorus in 2.65 to 2.43 billion year old drill core samples from the Transvaal Supergroup, South Africa, to investigate the sequence of events that facilitated persistent atmospheric oxygenation. On the basis of the elevated C/P ratios found within sulfidic sediments, relative to the Redfield ratio, we suggest that, as oxidative continental weathering increased the influx of dissolved sulfate and hence dissolved sulfide in the oceans, bioavailable phosphorus became more abundant due to anoxic recycling of sedimentary phosphorus phases. Biogeochemical modelling indicates that this initiated a positive feedback on primary productivity and shows that the evolution of phosphorus recycling may have been a critical step that enabled Earth’s transition to a persistently oxygenated atmosphere.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stratigraphy and geochemistry of the studied drill cores.
Fig. 2: Relationships between organic carbon and different phosphorus pools.
Fig. 3: Long-term trends in the phosphorus content and the sulfur isotope composition of marine sediments, highlighting Stages 1 to 3 in the progressive oxygenation of the early Earth.
Fig. 4: Steady-state model solutions for a fixed reduced gas flux.

Data availability

The geochemical dataset is available at

Code availability

Model code and output data are available from the corresponding author on reasonable request.


  1. Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).

    Article  Google Scholar 

  2. Kendall, B. et al. Pervasive oxygenation along late Archean ocean margins. Nat. Geosci. 3, 647–652 (2010).

    Article  Google Scholar 

  3. Ostrander, C. M. et al. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat. Geosci. 12, 186–191 (2019).

    Article  Google Scholar 

  4. Ossa Ossa, F. et al. Limited oxygen production in the Mesoarchean ocean. Proc. Natl Acad. Sci. USA 116, 6647–6652 (2019).

    Article  Google Scholar 

  5. Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Article  Google Scholar 

  6. Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    Article  Google Scholar 

  7. Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D. & Lyons, T. W. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009).

    Article  Google Scholar 

  8. Scott, C. T. et al. Late Archean euxinic conditions before the rise of atmospheric oxygen. Geology 39, 119–122 (2011).

    Article  Google Scholar 

  9. Poulton, S. W. Early phosphorus redigested. Nat. Geosci. 10, 75–76 (2017).

    Article  Google Scholar 

  10. Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).

    Article  Google Scholar 

  11. Bjerrum, C. J. & Canfield, D. E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159–162 (2002).

    Article  Google Scholar 

  12. Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017).

    Article  Google Scholar 

  13. Guilbaud, R. et al. Phosphorus-limited conditions in the early Neoproterozoic ocean maintained low levels of atmospheric oxygen. Nat. Geosci. 13, 296–301 (2020).

  14. Krom, M. D. & Berner, R. A. The diagenesis of phosphorus in a nearshore marine sediment. Geochim. Cosmochim. Acta 45, 207–216 (1981).

    Article  Google Scholar 

  15. Ingall, E. D., Bustin, R. M. & Van Cappellen, P. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim. Cosmochim. Acta 57, 303–316 (1993).

    Article  Google Scholar 

  16. Ingall, E. & Jahnke, R. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim. Cosmochim. Acta 58, 2571–2575 (1994).

    Article  Google Scholar 

  17. Ruttenberg, K. C. & Berner, R. A. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim. Cosmochim. Acta 57, 991–1007 (1993).

    Article  Google Scholar 

  18. Xiong, Y. et al. Phosphorus cycling in Lake Cadagno, Switzerland: a low sulfate euxinic ocean analogue. Geochim. Cosmochim. Acta 251, 116–135 (2019).

  19. Dijkstra, N., Kraal, P., Kuypers, M. M., Schnetger, B. & Slomp, C. P. Are iron-phosphate minerals a sink for phosphorus in anoxic Black Sea sediments? PLoS ONE 9, e101139 (2014).

    Article  Google Scholar 

  20. Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677–692 (1994).

    Article  Google Scholar 

  21. Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007).

    Article  Google Scholar 

  22. Greber, N. D. et al. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 357, 1271–1274 (2017).

    Article  Google Scholar 

  23. Lee, C.-T. A. et al. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci. 9, 417–424 (2016).

    Article  Google Scholar 

  24. Catling, D. C., Zahnle, K. J. & McKay, C. P. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001).

    Article  Google Scholar 

  25. Alcott, L. J., Mills, B. J. W. & Poulton, S. W. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science 366, 1333–1337 (2019).

    Article  Google Scholar 

  26. Zerkle, A. L., Claire, M. W., Domagal-Goldman, S. D., Farquhar, J. & Poulton, S. W. A bistable organic-rich atmosphere on the Neoarchean Earth. Nat. Geosci. 5, 359–363 (2012).

    Article  Google Scholar 

  27. Hardisty, D. S. et al. An evaluation of sedimentary molybdenum and iron as proxies for pore fluid paleoredox conditions. Am. J. Sci. 318, 527–556 (2018).

    Article  Google Scholar 

  28. Thompson, J. et al. Development of a modified SEDEX phosphorus speciation method for ancient rocks and modern iron-rich sediments. Chem. Geol. 524, 383–393 (2019).

    Article  Google Scholar 

  29. Bekker, A. et al. in Treatise on Geochemistry Vol. 9 (eds Holland, H. and Turekian, K.) 561–628 (Elsevier, 2013).

  30. Gumsley, A. P. et al. Timing and tempo of the Great Oxidation Event. Proc. Natl Acad. Sci. USA 114, 1811–1816 (2017).

    Article  Google Scholar 

  31. Bekker, A. & Holland, H. D. Oxygen overshoot and recovery in the early Paleoproterozoic. Earth Planet. Sci. Lett. 317–318, 295–304 (2012).

  32. Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545–548 (2018).

    Article  Google Scholar 

  33. Cox, G. M., Lyons, T. W., Mitchell, R. N., Hasterok, D. & Gard, M. Linking the rise of atmospheric oxygen to growth in the continental phosphorus inventory. Earth Planet. Sci. Lett. 489, 28–36 (2018).

    Article  Google Scholar 

  34. Kharecha, P., Kasting, J. F. & Siefert, J. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005).

    Article  Google Scholar 

  35. Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).

    Article  Google Scholar 

  36. Hao, J., Knoll, A. H., Huang, F., Hazen, R. M. & Daniel, I. Cycling phosphorus on the Archean Earth: part I. Continental weathering and riverine transport of phosphorus. Geochim. Cosmochim. Acta 273, 70–84 (2020).

    Article  Google Scholar 

  37. Krissansen-Totton, J., Arney, G. N. & Catling, D. C. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proc. Natl Acad. Sci. USA 115, 4105–4110 (2018).

    Article  Google Scholar 

  38. Daines, S. J., Mills, B. J. W. & Lenton, T. M. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat. Commun. 8, 14379 (2017).

  39. Shields, G. A. et al. Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial. Nat. Geosci. 12, 823–827 (2019).

    Article  Google Scholar 

  40. Schröder, S. Stratigraphic and geochemical framework of the Agouron drill cores, Transvaal Supergroup (Neoarchean–Paleoproterozoic, South Africa). S. Afr. J. Geol. 109, 23–54 (2006).

    Article  Google Scholar 

  41. Schröder, S., Bedorf, D., Beukes, N. J. & Gutzmer, J. From BIF to red beds: sedimentology and sequence stratigraphy of the Paleoproterozoic Koegas Subgroup (South Africa). Sediment. Geol. 236, 25–44 (2011).

    Article  Google Scholar 

  42. Trendall, A. F. et al. Precise zircon U/Pb chronological comparison of the volcano–sedimentary sequences of the Kaapvaal and Pilbara cratons between about 3.1 and 2.4 Ga. In Proc. Third International Archean Symposium (eds Glover, J. E & Ho, S. E.) 81–83 (1990).

  43. Lantink, M. L., Davies, J. H. F. L., Mason, P. R. D., Schaltegger, U. & Hilfen, F. J. Climate control on banded iron formations linked to orbital eccentricity. Nat. Geosci. 12, 369–374 (2019).

    Article  Google Scholar 

  44. Gutzmer, J. & Beukes, N. J. High-Grade Manganese Ores in the Kalahari Manganese Field: Characterisation and Dating of Ore-Forming Events. Unpublished Report. Rand Afrikaans University (1998).

  45. Havig, J. R., Hamilton, T. L., Bachan, A. & Kump, L. R. Sulfur and carbon isotopic evidence for metabolic pathway evolution and a four-stepped Earth system progression across the Archean and Paleoproterozoic. Earth Sci. Rev. 174, 1–21 (2017).

    Article  Google Scholar 

  46. Johnson, J. E. et al. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc. Natl Acad. Sci. USA 110, 11238–11243 (2013).

    Article  Google Scholar 

  47. Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).

    Article  Google Scholar 

  48. Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).

    Article  Google Scholar 

  49. Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3, 486–490 (2010).

    Article  Google Scholar 

  50. Doyle, K. A., Poulton, S. W., Newton, R. J., Podkovyrov, V. N. & Bekker, A. Shallow water anoxia in the Mesoproterozoic ocean: evidence from the Bashkir Meganticlinorium, Southern Urals. Precambrian Res. 317, 196–210 (2018).

    Article  Google Scholar 

  51. Tosca, N. J., Guggenheim, S. & Pufahl, P. K. An authigenic origin for Precambrian greenalite: implications for iron formation and the chemistry of ancient seawater. GSA Bull. 128, 511–530 (2016).

    Article  Google Scholar 

  52. Clarkson, M. O., Poulton, S. W., Guilbaud, R. & Wood, R. A. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. Chem. Geol. 382, 111–122 (2014).

    Article  Google Scholar 

  53. Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis 2nd edn (Fisheries Research Board of Canada, 1972).

  54. Claire, M. W., Catling, D. C. & Zahnle, K. J. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006).

    Article  Google Scholar 

  55. Kraal, P., Slomp, C. P., Forster, A. & Kuypers, M. M. M. Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 295, 42–54 (2010).

    Article  Google Scholar 

Download references


L.J.A. was funded by a Leeds Anniversary Research Scholarship. S.W.P. acknowledges support from a Leverhulme Research Fellowship and a Royal Society Wolfson Research Merit Award. S.W.P. and B.J.W.M. acknowledge financial support from NERC (NE/R010129/1). Participation of A.B. was made possible with funding from NSERC Discovery and Accelerator grants.

Author information

Authors and Affiliations



S.W.P., L.J.A., B.J.W.M. and A.B. designed the research and collected the samples. L.J.A. and S.W.P. performed geochemical analyses and interpreted the data. B.J.W.M. guided the biogeochemical modelling, and A.B. provided geological context. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Lewis J. Alcott.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Dominic Papineau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Tables 1–4 and discussion to support interpretations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcott, L.J., Mills, B.J.W., Bekker, A. et al. Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycling. Nat. Geosci. 15, 210–215 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing