Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emergence of felsic crust and subaerial weathering recorded in Palaeoarchaean barite

Abstract

Reconstructing the emergence and weathering of continental crust in the Archaean eon is crucial for our understanding of early ocean chemistry, biosphere evolution and the onset of plate tectonics. However, considerable disagreement exists between elemental and isotopic proxies that have been used to trace crustal input into marine sediments, and data are scarce before 3 Ga. Here we show that chemical weathering modified the Sr isotopic composition of seawater as recorded in 3.52–3.20 Ga stratiform barite deposits from three different cratons. Using a combination of Sr, S and O isotope data, barite petrography and a hydrothermal mixing model, we calculate a Sr isotope evolution trend of Palaeoarchaean seawater that is much more radiogenic than the curve previously determined from carbonate rocks. Our findings suggest that evolved crust containing high Rb/Sr was subaerial and weathering into the oceans from approximately 3.7 ± 0.15 Ga onwards with impacts on ocean chemistry and the nutrient supply to the marine biosphere.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Sr, S and O isotopic compositions of Palaeoarchaean stratiform barite.
Fig. 2: Modelled Palaeoarchaean seawater trend and the inferred onset of crustal weathering at 3.7 ± 0.15 Ga.
Fig. 3: Compilation of Archaean barite and carbonate Sr isotope data and comparison with published seawater curves.
Fig. 4: Estimated area of emerged felsic crust from 3.52 to 3.24 Ga for five weathering intensity scenarios.

Data availability

Strontium isotope data obtained in this study are available in Supplementary Table 2 and the Pangaea data repository under https://doi.org/10.1594/PANGAEA.913541. We have used published Sr isotope data for Barite Valley, Sargur and North Pole barite samples from refs. 13,14,42, S isotope data for Londozi, North Pole, Vergelegen, Stentor/Amo and Barite Valley from ref. 19, and O isotope data for Barite Valley from ref. 33. Ages of the barite deposits are from refs. 19,25,26,27,28,30. The compilation of Archaean Sr isotope data shown in Fig. 3 is available in Supplementary Table 7 with references. Source data are provided with this paper.

References

  1. Veizer, J. Strontium isotopes in seawater through time. Annu. Rev. Earth Planet. Sci. 17, 141–167 (1989).

    Google Scholar 

  2. Veizer, J. & Compston, W. 87Sr/86Sr composition of seawater during the Phanerozoic. Geochim. Cosmochim. Acta 38, 1461–1484 (1974).

    Google Scholar 

  3. Burke, W. et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10, 516–519 (1982).

    Google Scholar 

  4. Veizer, J., Hoefs, J., Lowe, D. & Thurston, P. Geochemistry of Precambrian carbonates: II. Archean greenstone belts and Archean sea water. Geochim. Cosmochim. Acta 53, 859–871 (1989).

    Google Scholar 

  5. Shields, G. & Veizer, J. Precambrian marine carbonate isotope database: version 1.1. Geochem. Geophys. Geosyst. 3, 1–12 (2002).

    Google Scholar 

  6. Bindeman, I. et al. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545–548 (2018).

    Google Scholar 

  7. Kamber, B. S. Archean mafic–ultramafic volcanic landmasses and their effect on ocean–atmosphere chemistry. Chem. Geol. 274, 19–28 (2010).

    Google Scholar 

  8. Kamber, B. S. & Webb, G. E. The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim. Cosmochim. Acta 65, 2509–2525 (2001).

    Google Scholar 

  9. Pons, M. L. et al. A Zn isotope perspective on the rise of continents. Geobiology 11, 201–214 (2013).

    Google Scholar 

  10. Johnson, B. W. & Wing, B. A. Limited Archaean continental emergence reflected in an early Archaean 18O-enriched ocean. Nat. Geosci. 13, 243–248 (2020).

    Google Scholar 

  11. Korenaga, J., Planavsky, N. J. & Evans, D. A. Global water cycle and the coevolution of the Earth’s interior and surface environment. Phil. Trans. R. Soc. A 375, 20150393 (2017).

    Google Scholar 

  12. Flament, N., Coltice, N. & Rey, P. F. The evolution of the 87Sr/86Sr of marine carbonates does not constrain continental growth. Precambrian Res. 229, 177–188 (2013).

    Google Scholar 

  13. Ravindran, A. et al. Initial 87Sr/86Sr as a sensitive tracer of Archaean crust–mantle evolution: constraints from igneous and sedimentary rocks in the western Dharwar craton, India. Precambrian Res. 337, 105523 (2019).

    Google Scholar 

  14. Satkoski, A. M., Lowe, D. R., Beard, B. L., Coleman, M. L. & Johnson, C. M. A high continental weathering flux into Paleoarchean seawater revealed by strontium isotope analysis of 3.26 Ga barite. Earth Planet. Sci. Lett. 454, 28–35 (2016).

    Google Scholar 

  15. Greber, N. D. et al. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 357, 1271–1274 (2017).

    Google Scholar 

  16. Garçon, M. et al. Erosion of Archean continents: the Sm–Nd and Lu–Hf isotopic record of Barberton sedimentary rocks. Geochim. Cosmochim. Acta 206, 216–235 (2017).

    Google Scholar 

  17. Nebel-Jacobsen, Y., Nebel, O., Wille, M. & Cawood, P. A. A non-zircon Hf isotope record in Archean black shales from the Pilbara craton confirms changing crustal dynamics ca. 3 Ga ago. Sci. Rep. 8, 922 (2018).

    Google Scholar 

  18. Bao, H., Rumble, D. & Lowe, D. R. The five stable isotope compositions of Fig Tree barites: implications on sulfur cycle in ca. 3.2 Ga oceans. Geochim. Cosmochim. Acta 71, 4868–4879 (2007).

    Google Scholar 

  19. Roerdink, D. L., Mason, P. R. D., Farquhar, J. & Reimer, T. Multiple sulfur isotopes in Paleoarchean barites identify an important role for microbial sulfate reduction in the early marine environment. Earth Planet. Sci. Lett. 331-332, 177–186 (2012).

    Google Scholar 

  20. Ueno, Y., Ono, S., Rumble, D. & Maruyama, S. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675–5691 (2008).

    Google Scholar 

  21. Muller, E., Philippot, P., Rollion-Bard, C. & Cartigny, P. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere. Proc. Natl Acad. Sci. USA 113, 7432–7437 (2016).

    Google Scholar 

  22. Crowe, S. A. et al. Sulfate was a trace constituent of Archean seawater. Science 346, 735–739 (2014).

    Google Scholar 

  23. Havig, J. R., Hamilton, T. L., Bachan, A. & Kump, L. R. Sulfur and carbon isotopic evidence for metabolic pathway evolution and a four-stepped Earth system progression across the Archean and Paleoproterozoic. Earth Sci. Rev. 174, 1–21 (2017).

    Google Scholar 

  24. Lowe, D. R., Drabon, N. & Byerly, G. R. Crustal fracturing, unconformities, and barite deposition, 3.26–3.23 Ga, Barberton Greenstone Belt, South Africa. Precambrian Res. 327, 34–46 (2019).

    Google Scholar 

  25. Reimer, T. O. Archean sedimentary baryte deposits of the Swaziland Supergroup (Barberton Mountain Land, South Africa). Precambrian Res. 12, 393–410 (1980).

  26. Nijman, W., de Bruijne, K. H. & Valkering, M. E. Growth fault control of Early Archaean cherts, barite mounds and chert–barite veins, North Pole Dome, Eastern Pilbara, Western Australia. Precambrian Res. 95, 247–274 (1999).

    Google Scholar 

  27. Roerdink, D. L., Mason, P. R. D., Whitehouse, M. J. & Brouwer, F. M. Reworking of atmospheric sulfur in a Paleoarchean hydrothermal system at Londozi, Barberton Greenstone Belt, Swaziland. Precambrian Res. 280, 195–204 (2016).

    Google Scholar 

  28. Muller, É. et al. Primary sulfur isotope signatures preserved in high-grade Archean barite deposits of the Sargur Group, Dharwar Craton, India. Precambrian Res. 295, 38–47 (2017).

    Google Scholar 

  29. Hofmann, A. & Harris, C. Silica alteration zones in the Barberton Greenstone Belt: a window into subseafloor processes 3.5-3.3 Ga ago. Chem. Geol. 257, 221–239 (2008).

    Google Scholar 

  30. Heinrichs, T. K. & Reimer, T. A sedimentary barite deposit from the Archean Fig Tree Group of the Barberton Mountain Land (South Africa). Econ. Geol. 72, 1426–1441 (1977).

    Google Scholar 

  31. Shikazono, N. Precipitation mechanisms of barite in sulfate–sulfide deposits in back-arc basins. Geochim. Cosmochim. Acta 58, 2203–2213 (1994).

    Google Scholar 

  32. Hanor, J. S. in Reviews in Mineralogy and Geochemistry: Sulfate Minerals: Crystallography, Geochemistry and Environmental Significance (eds Alpers, C. N. et al.) 193–275 (Mineralogical Society of America, 2000).

  33. Montinaro, A. et al. Paleoarchean sulfur cycling: multiple sulfur isotope constraints from the Barberton Greenstone Belt, South Africa. Precambrian Res. 267, 311–322 (2015).

    Google Scholar 

  34. Paris, G. et al. Deposition of sulfate aerosols with positive Δ³³S in the Neoarchean. Geochim. Cosmochim. Acta 285, 1–20 (2020).

    Google Scholar 

  35. Nabhan, S., Marin‐Carbonne, J., Mason, P. R. D. & Heubeck, C. In situ S‐isotope compositions of sulfate and sulfide from the 3.2 Ga Moodies Group, South Africa: a record of oxidative sulfur cycling. Geobiology 18, 426–444 (2020).

  36. Chiba, H. & Sakai, H. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures. Geochim. Cosmochim. Acta 49, 993–1000 (1985).

    Google Scholar 

  37. Wilckens, F. K., Reeves, E. P., Bach, W., Seewald, J. S. & Kasemann, S. A. Application of B, Mg, Li, and Sr isotopes in acid‐sulfate vent fluids and volcanic rocks as tracers for fluid–rock interaction in back‐arc hydrothermal systems. Geochem. Geophys. Geosyst. 20, 5849–5866 (2019).

    Google Scholar 

  38. James, R. H., Allen, D. E. & Seyfried, W. Jr An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350 °C): insights as to chemical processes in near-shore ridge-flank hydrothermal systems. Geochim. Cosmochim. Acta 67, 681–691 (2003).

    Google Scholar 

  39. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Google Scholar 

  40. Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5, Q05B07 (2004).

    Google Scholar 

  41. Hans, U., Kleine, T. & Bourdon, B. Rb–Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited. Earth Planet. Sci. Lett. 374, 204–214 (2013).

    Google Scholar 

  42. McCulloch, M. T. Primitive 87Sr86Sr from an Archean barite and conjecture on the Earth’s age and origin. Earth Planet. Sci. Lett. 126, 1–13 (1994).

    Google Scholar 

  43. Maher, K. The dependence of chemical weathering rates on fluid residence time. Earth Planet. Sci. Lett. 294, 101–110 (2010).

    Google Scholar 

  44. Arndt, N. Why was flood volcanism on submerged continental platforms so common in the Precambrian? Precambrian Res. 97, 155–164 (1999).

    Google Scholar 

  45. Buick, R. et al. Record of emergent continental crust 3.5 billion years ago in the Pilbara craton of Australia. Nature 375, 574–577 (1995).

    Google Scholar 

  46. Hoffmann, J. E., Zhang, C., Moyen, J.-F. & Nagel, T. J. in Earth’s Oldest Rocks 2nd edn (eds Van Kranendonk, M. J. et al.) 133–168 (Elsevier, 2019).

  47. Lipp, A. G. et al. The composition and weathering of the continents over geologic time. Geochem. Perspect. Lett. 17, 21–26 (2021).

    Google Scholar 

  48. Hessler, A. M. & Lowe, D. R. Weathering and sediment generation in the Archean: an integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Res. 151, 185–210 (2006).

    Google Scholar 

  49. Prokoph, A., Shields, G. A. & Veizer, J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci. Rev. 87, 113–133 (2008).

    Google Scholar 

  50. Satkoski, A. M., Fralick, P., Beard, B. L. & Johnson, C. M. Initiation of modern-style plate tectonics recorded in Mesoarchean marine chemical sediments. Geochim. Cosmochim. Acta 209, 216–232 (2017).

    Google Scholar 

  51. Marty, B., Avice, G., Bekaert, D. V. & Broadley, M. W. Salinity of the Archaean oceans from analysis of fluid inclusions in quartz. C. R. Geosci. 350, 154–163 (2018).

    Google Scholar 

  52. Blount, C. W. Barite solubilities and thermodynamic quantities up to 300 degrees C and 1400 bars. Am. Mineral. 62, 942–957 (1977).

    Google Scholar 

  53. Blake, R. E., Chang, S. J. & Lepland, A. Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464, 1029–1032 (2010).

    Google Scholar 

  54. Jamieson, J. W. et al. Precipitation and growth of barite within hydrothermal vent deposits from the Endeavour Segment, Juan de Fuca Ridge. Geochim. Cosmochim. Acta 173, 64–85 (2016).

    Google Scholar 

Download references

Acknowledgements

We thank A. Hoffman (University of Johannesburg, South Africa) for Sargur barite samples, S. H. Dundas for ICP-MS analyses, and J. Hoek and J. Farquhar (University of Maryland, United States) for multiple S isotope analyses. A. Beinlich, D. van Hinsbergen, H. Tsikos and M. van Zuilen are thanked for critically reading through an earlier version of the manuscript and providing constructive comments. This research was funded by the Research Council of Norway through the Centre for Geobiology (grant number 179560, D.L.R.), and fieldwork in South Africa was supported by the Dr Schürmann Foundation (grant number 46/2007 and 132/2018, P.R.D.M.).

Author information

Authors and Affiliations

Authors

Contributions

D.L.R. conceived the study. D.L.R. and P.R.D.M. provided and prepared samples. Y.R. and H.S. measured data. D.L.R. and P.R.D.M. interpreted data and wrote the manuscript.

Corresponding author

Correspondence to Desiree L. Roerdink.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Aaron Satkoski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1 and 2, and Tables 1, 3–6 and 8–11.

Supplementary Data 1

Supplementary Tables 2 and 7.

Supplementary Data 2

Source data Supplementary Fig. 2.

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roerdink, D.L., Ronen, Y., Strauss, H. et al. Emergence of felsic crust and subaerial weathering recorded in Palaeoarchaean barite. Nat. Geosci. 15, 227–232 (2022). https://doi.org/10.1038/s41561-022-00902-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00902-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing