Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct astronomical influence on abrupt climate variability

Abstract

Changes in the magnitude of millennial-scale climate variability (MCV) during the Late Pleistocene occur as a function of changing background climate state over tens of thousands of years, an indirect consequence of slowly varying incoming solar radiation associated with changes in Earth’s orbit. However, whether astronomical forcing can stimulate MCV directly (without a change in the background state) remains to be determined. Here we use a comprehensive fully coupled climate model to demonstrate that orbitally driven insolation changes alone can give rise to spontaneous millennial-scale climate oscillations under intermediate glacial conditions. Our results demonstrate that an abrupt transition from warm interstadial to cold stadial conditions can be triggered directly by a precession-controlled increase in low-latitude boreal summer insolation and/or an obliquity-controlled decrease in high-latitude mean annual insolation, by modulating North Atlantic low-latitude hydroclimate and/or high-latitude sea ice–ocean–atmosphere interactions, respectively. Furthermore, contrasting insolation effects over the tropical versus subpolar North Atlantic, exerted by obliquity or precession, result in an oscillatory climate regime, even within an otherwise stable climate. With additional sensitivity experiments under different glacial–interglacial climate backgrounds, we synthesize a coherent theoretical framework for climate stability, elaborating the direct and indirect (dual) control by Earth’s orbital cycles on millennial-scale climate variability during the Pleistocene.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Relationship of millennial-scale climate activity with Earth’s orbit and G-IG cycles in the last 800 kyr.
Fig. 2: Orbitally induced AMOC oscillatory regime.
Fig. 3: Triggering dynamics of orbitally induced AMOC changes.
Fig. 4: Responses of the AMOC oscillatory regime to millennial-scale CO2 changes.
Fig. 5: Response of the AMOC oscillatory regime to varying intermediate glacial conditions.
Fig. 6: Conceptual framework for the AMOC oscillatory regime in the phase space of Earth’s orbit under different climate backgrounds.

Data availability

The palaeoclimate records used in this paper are available at the following sources: ref. 2, benthic δ18O stack, https://doi.pangaea.de/10.1594/PANGAEA.704257; ref. 37, CO2 data, http://onlinelibrary.wiley.com/store/10.1002/2014GL061957/asset/supinfo/grl52461-sup-0003-supplementary.xls?v=1&s=e77ad89c3925111330671009ab40eac65e019d01; ref. 50, ODP983 NPS data, https://doi.pangaea.de/10.1594/PANGAEA.904398. The model data that supports the key findings of this study are available in National Tibetan Plateau Data Center (TPDC) at https://doi.org/10.11888/Paleoenv.tpdc.271670.

Code availability

The standard model code of the ‘Community Earth System Models’ (COSMOS) version COSMOS-landveg r2413 (2009) is available upon request from the ‘Max Planck Institute for Meteorology’ in Hamburg (https://www.mpimet.mpg.de). Post-processing of the model output and model data analysis were performed with CDO (Climate Data Operators, version 1.9.5 and 1.9.10, https://code.mpimet.mpg.de/projects/cdo).

References

  1. Hays, J. D., Imbrie, J. & Shackleton, N. J. J. Variations in the Earth’ s orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1976).

    Article  Google Scholar 

  2. Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1–17 (2005).

    Google Scholar 

  3. Raymo, M. E., Ganley, K., Carter, S., Oppo, D. W. & McManus, J. Millennial-scale climate instability during the early Pleistocene epoch. Nature 392, 699–702 (1998).

    Article  Google Scholar 

  4. McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999).

    Article  Google Scholar 

  5. Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

    Article  Google Scholar 

  6. Hodell, D. A. & Channell, J. E. T. Mode transitions in Northern Hemisphere Glaciation: co-evolution of millennial and orbital variability in Quaternary climate. Clim. Past 12, 1805–1828 (2016).

    Article  Google Scholar 

  7. Brook, E. J. & Buizert, C. Antarctic and global climate history viewed from ice cores. Nature 558, 200–208 (2018).

    Article  Google Scholar 

  8. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).

    Article  Google Scholar 

  9. Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001).

    Article  Google Scholar 

  10. Zhang, X., Lohmann, G., Knorr, G. & Purcell, C. Abrupt glacial climate shifts controlled by ice sheet changes. Nature 512, 290–294 (2014).

    Article  Google Scholar 

  11. Peltier, W. R. & Vettoretti, G. Dansgaard–Oeschger oscillations predicted in a comprehensive model of glacial climate: a ‘kicked’ salt oscillator in the Atlantic. Geophys. Res. Lett. 41, 7306–7313 (2014).

    Article  Google Scholar 

  12. Zhang, X., Knorr, G., Lohmann, G. & Barker, S. Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state. Nat. Geosci. 10, 518–523 (2017).

    Article  Google Scholar 

  13. Lynch-Stieglitz, J. The Atlantic meridional overturning circulation and abrupt climate change. Ann. Rev. Mar. Sci. 9, 83–104 (2017).

    Article  Google Scholar 

  14. Barker, S. et al. 800,000 years of abrupt climate variability. Science 334, 347–351 (2011).

    Article  Google Scholar 

  15. Siddall, M., Rohling, E. J., Blunier, T. & Spahni, R. Patterns of millennial variability over the last 500 ka. Clim. Past 6, 295–303 (2010).

    Article  Google Scholar 

  16. Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).

    Article  Google Scholar 

  17. McIntyre, A. & Molfinot, B. Forcing of Atlantic equatorial and subpolar millennial cycles by precession. Science 274, 1867–1870 (1996).

    Article  Google Scholar 

  18. Thirumalai, K., Clemens, S. C. & Partin, J. W. Methane, monsoons and modulation of millennial-scale climate. Geophys. Res. Lett. 47, e2020GL087613 (2020).

    Article  Google Scholar 

  19. Zhang, X., Prange, M., Merkel, U. & Schulz, M. Instability of the Atlantic overturning circulation during Marine Isotope Stage 3. Geophys. Res. Lett. 41, 4285–4293 (2014).

    Article  Google Scholar 

  20. Rial, J. A. & Yang, M. Is the frequency of abrupt climate change modulated by the orbital insolation? Geophys. Monogr. Ser. 173, 167–174 (2007).

    Google Scholar 

  21. Mitsui, T. & Crucifix, M. Influence of external forcings on abrupt millennial‑scale climate changes: a statistical modelling study. Clim. Dyn. 48, 2729–2749 (2017).

    Article  Google Scholar 

  22. Schmittner, A. & Galbraith, E. D. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456, 373–376 (2008).

    Article  Google Scholar 

  23. Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl Acad. Sci. USA 108, 13415–13419 (2011).

    Article  Google Scholar 

  24. Markle, B. R. et al. Global atmospheric teleconnections during Dansgaard–Oeschger events. Nat. Geosci. 10, 36–40 (2017).

    Article  Google Scholar 

  25. Ahn, J. & Brook, E. J. Siple Dome ice reveals two modes of millennial CO2 change during the last ice age. Nat. Commun. 5, 3723 (2014).

    Article  Google Scholar 

  26. Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).

    Article  Google Scholar 

  27. Laskar, J. et al. A long term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  Google Scholar 

  28. Grootes, P. M. & Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10−3 to 105-year time resolution. J. Geophys. Res. Oceans 102, 26455–26470 (1997).

    Article  Google Scholar 

  29. Marsden, S. E., & McCracken, M. The Hopf Bifurcation and Its Applications. (Springer-Verlag, New York. 976).

  30. Wang, C., Zhang, L. & Lee, S.-K. Response of freshwater flux and sea surface salinity to variability of the Atlantic warm pool. J. Clim. 26, 1249–1267 (2013).

    Article  Google Scholar 

  31. Gill, A. E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

    Article  Google Scholar 

  32. Li, C. & Born, A. Coupled atmosphere-ice-ocean dynamics in Dansgaard-Oeschger events. Q. Sci. Rev 203, 1–20 (2019).

    Article  Google Scholar 

  33. Winton, M. in Ice in the Climate System (ed. Peltier, W. R.) 417–432 (Springer, 1993).

  34. Brown, N. & Galbraith, E. D. Hosed vs. unhosed: interruptions of the Atlantic Meridional Overturning Circulation in a global coupled model, with and without freshwater forcing. Clim. Past 12, 1663–1679 (2016).

    Article  Google Scholar 

  35. Broecker, W. S., Bond, G., Klas, M., Bonani, G. & Wolfli, W. A salt oscillator in the Glacial Atlantic? 1. The concept. Paleoceanography 5, 469–477 (1990).

    Article  Google Scholar 

  36. Ahn, J. & Brook, E. J. Atmospheric CO2 and climate on millennial time scales during the last glacial period. Science 83, 83–85 (2008).

    Article  Google Scholar 

  37. Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).

    Article  Google Scholar 

  38. Siddall, M., Rohling, E. J., Thompson, W. G. & Waelbroeck, C. Marine Isotope Stage 3 sea level fluctuations: data synthesis and new outlook. Rev. Geophys. 46, RG000226 (2008).

    Article  Google Scholar 

  39. Gottschalk, J. et al. Mechanisms of millennial-scale atmospheric CO2 change in numerical model simulations. Q. Sci. Rev. 220, 30–74 (2019).

    Article  Google Scholar 

  40. Billups, K. & Scheinwald, A. Origin of millennial-scale climate signals in the subtropical North Atlantic. Paleoceanography 29, 612–627 (2014).

    Article  Google Scholar 

  41. Yin, Q. Z., Wu, Z. P., Berger, A., Goosse, H. & Hodell, D. Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials. Science 373, 1035–1040 (2021).

    Article  Google Scholar 

  42. Dokken, T. M., Nisancioglu, K. H., Li, C., Battisti, D. S. & Kissel, C. Dansgaard-Oeschger cycles: interactions between ocean and sea ice intrinsic to the Nordic Seas. Paleoceanography 28, 491–502 (2013).

    Article  Google Scholar 

  43. Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–336 (2015).

    Article  Google Scholar 

  44. Milanković, M. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem, Royal Serbien Sciences, Special Publications 132, Section of Mathematical and Natural Sciences 133 (Royal Serbian Academy, 1941).

  45. Heinrich, H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 29, 142–152 (1988).

    Article  Google Scholar 

  46. Bassis, J. N., Petersen, S. V. & Mac Cathles, L. Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature 542, 332–334 (2017).

    Article  Google Scholar 

  47. Shackleton, N. J. & Opdyke, N. D. Oxygen-isotope and paleomagnetic stratigraphy of pacific core V28-239 late Pliocene to latest Pleistocene. Geological Society of America Memoir. 145, 449–464 (1976).

    Article  Google Scholar 

  48. Pisias, N. G. & Moore, T. C. The evolution of Pleistocene climate: a time series approach. Earth Planet. Sci. Lett. 52, 450–458 (1981).

    Article  Google Scholar 

  49. Sun, Y. et al. Persistent orbital influence on millennial climate variability through the Pleistocene. Nat. Geosci. https://doi.org/10.1038/s41561-021-00794-1 (2021).

  50. Barker, S. et al. Early interglacial legacy of deglacial climate instability. Paleoceanogr. Paleoclimatol. 34, 1455–1475 (2019).

    Article  Google Scholar 

  51. Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).

    Article  Google Scholar 

  52. Roeckner, E. et al. The Atmospheric General Circulation Model ECHAM5. Part 1: Model Description (Max-Planck-Institut für Meteorologie, 2003).

  53. Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M. & Gayler, V. Global biogeophysical interactions between forest and climate. Geophys. Res. Lett. 36, L07405 (2009).

    Article  Google Scholar 

  54. Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M. & Röske, F. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model. 5, 91–127 (2003).

    Article  Google Scholar 

  55. Hibler, W. III A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9, 815–846 (1979).

    Article  Google Scholar 

  56. Wei, W. & Lohmann, G. Simulated Atlantic multidecadal oscillation during the Holocene. J. Clim. 25, 6989–7022 (2012).

    Article  Google Scholar 

  57. Gong, X., Knorr, G., Lohmann, G. & Zhang, X. Dependence of abrupt Atlantic meridional ocean circulation changes on climate background states. Geophys. Res. Lett. 40, 3698–3704 (2013).

    Article  Google Scholar 

  58. Zhang, X., Lohmann, G., Knorr, G. & Xu, X. Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation. Clim. Past 9, 2319–2333 (2013).

    Article  Google Scholar 

  59. Knorr, G. & Lohmann, G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nat. Geosci. 7, 376–381 (2014).

    Article  Google Scholar 

  60. Stärz, M., Jokat, W., Knorr, G. & Lohmann, G. Threshold in North Atlantic–Arctic Ocean circulation controlled by the subsidence of the Greenland–Scotland Ridge. Nat. Commun. 8, 15681 (2017).

    Article  Google Scholar 

  61. Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4 and N2O and their radiative forcing. Earth Syst. Sci. Data 9, 363–387 (2017).

    Article  Google Scholar 

  62. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) Model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  Google Scholar 

  63. Hemming, S. Heinrich events: massive Late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004).

    Article  Google Scholar 

  64. Myhre, G., Highwood, E. J., Shine, K. P. & Stordal, F. New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25, 2715–2718 (1998).

    Article  Google Scholar 

  65. Wang, C., Enfield, D. B., Lee, S. K. & Landsea, C. W. Influences of the Atlantic warm pool on western hemisphere summer rainfall and Atlantic hurricanes. J. Clim. 19, 3011–3028 (2006).

    Article  Google Scholar 

  66. Voelker, A. H. L. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quat. Sci. Rev. 21, 1185–1212 (2002).

    Article  Google Scholar 

  67. Kissel, C., Laj, C., Labeyrie, L. & Dokken, T. Rapid climatic variations during marine isotopic stage 3: magnetic analysis of sediments from Nordic Seas and North Atlantic. Earth Planet. Sci. Lett. 171, 489–502 (1999).

    Article  Google Scholar 

  68. Elliot, M., Labeyrie, L. & Duplessy, J. Changes in North Atlantic deep-water formation associated with the Dansgaard-Oeschger temperature oscillations (60–10 ka). Quat. Sci. Rev. 21, 1153–1165 (2002).

    Article  Google Scholar 

  69. Grootes, P. M., Stulver, M., White, J. W. C., Johnsen, S. & Jouzel, J. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552–554 (1993).

    Article  Google Scholar 

  70. Huber, C. et al. Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4. Earth Planet. Sci. Lett. 243, 504–519 (2006).

    Article  Google Scholar 

  71. Rasmussen, T. L. & Thomsen, E. Warm Atlantic surface water inflow to the Nordic seas 34–10 calibrated ka B.P. Paleoceanography 23, PA1201 (2008).

    Article  Google Scholar 

  72. Rasmussen, T., Thomsen, E., Labeyriefi, L. & van Weering, T. C. E. Circulation changes in the Faeroe-Shetland Channel correlating with cold events during the last glacial period (58–10 ka). Geology 24, 937–940 (1996).

    Article  Google Scholar 

  73. Rasmussen, T., Thomsen, E., Troelstra, S. R., Kuijpers, A. & Prins, M. A. Millennial-scale glacial variability versus Holocene stability: changes in planktic and benthic foraminifera faunas and ocean circulation in the North Atlantic during the last 60,000 years. Mar. Micropaleontol. 47, 143–176 (2002).

    Article  Google Scholar 

  74. Rasmussen, T. L. et al. The Faroe-Shetland Gateway: Late Quaternary water mass exchange between the Nordic seas and the northeastern Atlantic. Mar. Geol. 188, 165–192 (2002).

    Article  Google Scholar 

  75. Kandiano, E. S., Bauch, H. A. & Müller, A. Sea surface temperature variability in the North Atlantic during the last two glacial-interglacial cycles: comparison of faunal, oxygen isotopic and Mg/Ca-derived records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 204, 145–164 (2004).

    Article  Google Scholar 

  76. Kiefer, T., Sarnthein, M., Erlenkeuser, H., Grootes, P. M. & Roberts, A. P. North Pacific response to millennial-scale changes in ocean circulation over the last 60 kyr. Paleoceanography 16, 179–189 (2001).

    Article  Google Scholar 

  77. Harada, N. et al. Rapid fluctuation of alkenone temperature in the southwestern Okhotsk Sea during the past 120 ky. Glob. Planet. Change 53, 29–46 (2006).

    Article  Google Scholar 

  78. Martrat, B. et al. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 317, 502–507 (2007).

    Article  Google Scholar 

  79. Cacho, I., Grimalt, J. & Pelejero, C. Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures. Paleoceanography 14, 698–705 (1999).

    Article  Google Scholar 

  80. Hendy, I. & Kennett, J. Dansgaard-Oeschger cycles and the California Current System: planktonic foraminiferal response to rapid climate change in Santa Barbara Basin, Ocean Drilling Program hole 893A. Paleoceanography 15, 30–42 (2000).

    Article  Google Scholar 

  81. Sachs, J. P. & Lehmann, S. J. Subtropical North Atlantic temperatures 60,000 to 30,000 years ago. Science 286, 756–759 (1999).

    Article  Google Scholar 

  82. Simon, M. H. et al. Millennial-scale Agulhas current variability and its implications for salt-leakage through the Indian-Atlantic Ocean Gateway. Earth Planet. Sci. Lett. 383, 101–112 (2013).

    Article  Google Scholar 

  83. Lamy, F. et al. Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 1959–1962 (2004).

    Article  Google Scholar 

  84. Pahnke, K., Zahn, R., Elderfield, H. & Schulz, M. 340,000 year centennial-scale marine record of southern hemisphere climatic oscillation. Science 301, 948–952 (2003).

    Article  Google Scholar 

  85. Caniupán, M. et al. Millennial-scale sea surface temperature and Patagonian Ice Sheet changes off southernmost Chile (53° S) over the past 60 kyr. Paleoceanography 26, PA3221 (2011).

    Article  Google Scholar 

  86. Barbante, C. et al. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195–198 (2006).

    Article  Google Scholar 

  87. Augustin, L. et al. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).

    Article  Google Scholar 

  88. Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in Antarctica and Greenland during the Last Glacial period. Science 291, 109–112 (2001).

    Article  Google Scholar 

  89. Van Meerbeeck, C. J. et al. The nature of MIS 3 stadial-interstadial transitions in Europe: new insights from model-data comparisons. Quat. Sci. Rev. 30, 3618–3637 (2011).

    Article  Google Scholar 

  90. Müller, U. C. et al. The role of climate in the spread of modern humans into Europe. Quat. Sci. Rev. 30, 273–279 (2011).

    Article  Google Scholar 

  91. Wang, Y. J. et al. A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).

    Article  Google Scholar 

  92. Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A. & Hawkesworth, J. C. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 67, 3181–3199 (2003).

    Article  Google Scholar 

  93. Grimm, E. C. et al. Evidence for warm wet Heinrich events in Florida. Quat. Sci. Rev. 25, 2197–2211 (2006).

    Article  Google Scholar 

  94. Yuan, D. et al. Timing, duration and transitions of the last interglacial Asian monsoon. Science 304, 575–578 (2004).

    Article  Google Scholar 

  95. Schulz, H., von Rad, U. & Erlenkeuser, H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393, 23–25 (1998).

    Article  Google Scholar 

  96. Altabet, M., Higginson, M. & Murray, D. The effect of millennial-scale changes in Arabian Sea denitrication on atmospheric CO2. Nature 764, 159–162 (2002).

    Article  Google Scholar 

  97. Hodell, D. A. et al. An 85-ka record of climate change in lowland Central America. Quat. Sci. Rev. 27, 1152–1165 (2008).

    Article  Google Scholar 

  98. Burns, S. J., Fleitmann, D., Matter, A., Kramers, J. & Al-Subbary, A. A. Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science 301, 1365–1367 (2003).

    Article  Google Scholar 

  99. Peterson, L. C., Haug, G. H., Hughen, K. A. & Roehl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290, 1947–1951 (2000).

    Article  Google Scholar 

  100. Jennerjahn, T. C. et al. Asynchronous terrestrial and marine signals of climate change during Heinrich events. Science 306, 2236–2239 (2004).

  101. Tierney, J. E. et al. Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322, 252–255 (2008).

    Article  Google Scholar 

  102. Brown, E. T., Johnson, T. C., Scholz, C. A., Cohen, A. S. & King, J. W. Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years. Geophys. Res. Lett. 34, L20702 (2007).

    Article  Google Scholar 

  103. Wang, X. et al. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432, 740–743 (2004).

    Article  Google Scholar 

  104. Kanner, L. C., Burns, S. J., Cheng, H. & Edwards, R. L. High-latitude forcing of the South American summer monsoon during the Last Glacial. Science 335, 570–573 (2012).

    Article  Google Scholar 

  105. Turney, C., Kershaw, A. & Clemens, S. Millennial and orbital variations of El Nino/Southern Oscillation and high-latitude climate in the Last Glacial period. Nature 428, 306–310 (2004).

    Article  Google Scholar 

  106. Baker, P. A. et al. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409, 698–701 (2001).

    Article  Google Scholar 

  107. Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D. & Vuille, M. Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth Planet. Sci. Lett. 248, 495–507 (2006).

    Article  Google Scholar 

  108. Wang, X. et al. Interhemispheric anti-phasing of rainfall during the Last Glacial period. Quat. Sci. Rev. 25, 3391–3403 (2006).

    Article  Google Scholar 

  109. Cruz, F. W. Jr et al. Insolation-driven changes in atmospheric circulation over the last 116000 years in subtropical Brazil. Nature 434, 63–66 (2005).

    Article  Google Scholar 

  110. Ziegler, M. et al. Development of Middle Stone Age innovation linked to rapid climate change. Nat. Commun. 4, 1905 (2013).

    Article  Google Scholar 

  111. Barker, S. et al. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 1097–1102 (2009).

    Article  Google Scholar 

  112. Li, C., Battisti, D. S. & Bitz, C. M. Can North Atlantic sea ice anomalies account for Dansgaard-Oeschger climate signals?. J. Clim. 23, 5457–5475 (2010).

    Article  Google Scholar 

  113. Weber, S. L. et al. The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Clim. Past 3, 51–64 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank colleagues at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research in Bremerhaven for maintaining the supercomputer. The study is supported by the Basic Science Center for Tibetan Plateau Earth System (BSCTPES, NSFC project no. 41988101), the Natural Science Foundation of China (no. 42075047) and the German Helmholtz Postdoc Program (PD-301). We also acknowledge financial support from UK NERC (grants nos. NE/J008133/1 and NE/L006405/1) to S.B. and the German BMBF funded project PalMod (01LP1504A, 01LP1915A and 01LP1916B) and the PACES programme of the AWI to G.K. and G.L. A sabbatical visit by R.D. to AWI was financially supported by the Faculty of Science at the University of Melbourne.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. conceived and developed the research, and wrote the manuscript with help of S.B. and G.K. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Xu Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Pepijn Bakker and Sophia Hines for their contribution to the peer review of this work. Primary Handling Editor(s): James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Climate characteristics of E40ka_CTL control run.

a, AMOC index in E40ka_CTL and its response to freshwater hosing (E40ka_FWF). The hosing lasts for 500 years, starting from the 0th year before which is the control experiment E40ka_CTL. b, c Mean annual SIC and barotropic stream function (SF, units: Sv) under 40ka BP conditions57. d, e same as b, c, but under the LGM boundary conditions (E40ka_CTL).

Extended Data Fig. 2 Oscillating dynamics in the scenario with varying (a-e, TRN40ka) and constant (f-j, E40ka_34kaOrb) orbital configurations.

a) and e) for AMOC index (units: Sv); b) and g) for sea surface temperature (units: °C), c) and h) for sea ice concentration (SIC, units: %), d) and i) for subsurface sea temperature (units: °C) in the key convection sites of the NA; e) and j) for meridional salt water transportation along 43°N (units: Sv) in the NA. We calculate the regional averages of SST, SIC and subsurface T in the northeastern NA (30°W-10°W, 50°-65°N). Bold lines show the 30-year running mean of the original data (thin grey lines). Bold lines show the 30-year running mean of the original data (thin grey lines). The short blue and red bold lines in (a) and (f) correspond to selected time intervals representing stadial and interstadial periods, respectively, which are used to calculate composite anomalies between strong and weak AMOC phases in Extended Data Fig. 3 and 7a, b. Note that length of these lines indicates length of time intervals.

Extended Data Fig. 3 Climate changes during stadial-to-interstadial transitions in TRN40ka (a-b) and E40ka_34kaOrb (c-d).

a, b Composite surface temperature anomalies between simulated strong and weak AMOC phases as indicated by short red and blue bold lines in Extended Data Fig. 3a, f. c, d, same as (a) and (b), but for precipitation. The dots represent qualitatively the corresponding changes in paleoclimate proxy records as shown in Extended Data Table 2 and 3.

Extended Data Fig. 4 Oscillating dynamics in the scenario with lowered eccentricity-modulated precession (a-e, E40ka_34kaEP) and obliquity (f-j, E40ka_34kaObl).

a) and e) for AMOC index (units: Sv); b) and g) for sea surface temperature (units: °C), c) and h) for sea ice concentration (SIC, units: %), d) and i) for subsurface sea temperature (units: °C) in the key convection sites of the NA; e) and j) for meridional salt water transportation along 43°N (units: Sv) in the NA. We calculate the regional averages of SST, SIC and subsurface T in the northeastern NA (30°W-10°W, 50°-65°N). Bold lines show the 30-year running mean of the original data (thin grey lines).

Extended Data Fig. 5 Triggering dynamics regarding lowered obliquity (a-c, E40ka_34kaObl) or eccentricity-modulated precession (d-i, E40ka_34kaEP).

a, b, c, Annual mean anomalies of surface air temperature (SAT, units: °C), SIC (shaded, units: %) and mixed layer depth (contour, units: m), and sea level pressure (SLP, contour, units: Pa), total net freshwater flux into the ocean (TNFWF, shaded, units: mm·day-1) and vertical integrated moisture transport (VIMT, vector, units: kg·m-1s-1) between the 100-year average before the onset of its initial transition into a weak AMOC phase in E40ka_34kaObl and that in the control run E40ka_CTL; d, e, f, same as a, b, c, but for annual mean anomalies between 40-year average before the onset of its initial transition into a weak AMOC phase in E40ka_34kaEP and that in E40ka_CTL; g, h, i, same as d, e, f, but for boreal summer mean anomalies.

Extended Data Fig. 6 Governing dynamics of precession-induced tropical NA hydroclimate changes.

a. Mean annual precipitation anomaly between high and low boreal summer insolation scenarios under LGM conditions in coupled model COSMOS. b – f. Mean annual precipitation anomalies of AGCM sensitivity runs in contrast to the AGCM control run (Methods, Extended Data Table 1).

Extended Data Fig. 7 Simulated AMOC states in the transient experiment under intermediate glacial conditions and equilibrium experiments under peak glacial and interglacial conditions.

a, b AMOC states in the composited weak and strong phases of oscillatory regime in TRN40ka, representing stadial and interstadial AMOC state. c, d, e, f are equilibrated AMOC states in orbital sensitivity runs under the LGM conditions. g, h, i, j same as c-f but under the pre-industrial conditions.

Extended Data Table 1 Model simulations in this study
Extended Data Table 2 Temperature proxy data used for model-data comparison. Temperature proxy data used for model-data comparison
Extended Data Table 3 Information regarding 23 reconstructed precipitation records used for model-data comparison

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Barker, S., Knorr, G. et al. Direct astronomical influence on abrupt climate variability. Nat. Geosci. 14, 819–826 (2021). https://doi.org/10.1038/s41561-021-00846-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00846-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing