Abstract
Geochemical redox proxies indicate that seafloor anoxia occurred during the latest Ordovician glacial maximum, coincident with the second pulse of the Late Ordovician mass extinction. However, expanded anoxia in a glacial climate strikingly contrasts with the warming-associated Mesozoic anoxic events and raises questions as to both the causal mechanism of ocean deoxygenation and its relationship with extinction. Here we firstly report iodine-to-calcium ratio (I/Ca) data that document increased upper-ocean oxygenation despite the concurrent expansion of seafloor anoxia. We then resolve these apparently conflicting observations as well as their relationship to global climate by means of a series of Earth system model simulations. Applying available Late Ordovician (Hirnantian) sea-surface temperature estimates from oxygen isotope studies as constraints, alongside our I/Ca data, leads us to identify a scenario in which Hirnantian glacial conditions permit both the spread of seafloor anoxia and increased upper-ocean oxygenation. Our simulated mechanism of a reorganization of global ocean circulation, with reduced importance of northern-sourced waters and a poorer ventilated and deoxygenated deep ocean has parallels with Pleistocene state transitions in Atlantic meridional overturning (despite a very different continental configuration) and suggests that no simple and predictable relationship between past climate state and oxygenation may exist.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Impact of global climate cooling on Ordovician marine biodiversity
Nature Communications Open Access 10 October 2023
-
Ordovician–Silurian true polar wander as a mechanism for severe glaciation and mass extinction
Nature Communications Open Access 26 December 2022
-
Different controls on the Hg spikes linked the two pulses of the Late Ordovician mass extinction in South China
Scientific Reports Open Access 25 March 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The I/Ca data can be downloaded from Zenodo (https://zenodo.org/record/5136966#.YP5vClMzbu6).
Code availability
The code for the version of the ‘muffin’ release of the cGENIE Earth system model used in this paper is tagged as v0.9.20 and available at https://doi.org/10.5281/zenodo.4618203.
Configuration files for the specific experiments presented in the paper can be found in the directory: genie-userconfigs/MS/pohletal.NatGeo.2020. Details on the experiments, plus the command line needed to run each one, are given in the readme.txt file in that directory. All other configuration files and boundary conditions are provided as part of the code release.
A manual detailing code installation, basic model configuration, tutorials covering various aspects of model configuration and experimental design, plus results output and processing, are available at https://doi.org/10.5281/zenodo.4615662.
References
Sepkoski, J. J., Bambach, R. K., Raup, D. M. & Valentine, J. W. Phanerozoic marine diversity and the fossil record. Nature 293, 435–437 (1981).
Harper, D. A. T., Hammarlund, E. U. & Rasmussen, C. M. Ø. End Ordovician extinctions: a coincidence of causes. Gondwana Res. 25, 1294–1307 (2013).
Saupe, E. et al. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nat. Geosci. 13, 65–70 (2019).
Hu, D. et al. Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late Ordovician mass extinction. Nat. Commun. 11, 2297 (2020).
Holmden, C. et al. Nd isotope records of late Ordovician sea-level change—Implications for glaciation frequency and global stratigraphic correlation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 386, 131–144 (2013).
Ghienne, J.-F. et al. A Cenozoic-style scenario for the end-Ordovician glaciation. Nat. Commun. 5, 4485 (2014).
Bartlett, R. et al. Abrupt global-ocean anoxia during the Late Ordovician–early Silurian detected using uranium isotopes of marine carbonates. Proc. Natl Acad. Sci. USA 115, 5896–5901 (2018).
Stockey, R. G. et al. Persistent global marine euxinia in the early Silurian. Nat. Commun. 11, 1804 (2020).
Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11, Q03004 (2010).
Pohl, A., Donnadieu, Y., Le Hir, G. & Ferreira, D. The climatic significance of Late Ordovician–early Silurian black shales. Paleoceanography 32, 397–423 (2017).
Melchin, M. J., Mitchell, C. E., Holmden, C. & Štorch, P. Environmental changes in the Late Ordovician–early Silurian: review and new insights from black shales and nitrogen isotopes. Geol. Soc. Am. Bull. 125, 1635–1670 (2013).
Lu, Z., Jenkyns, H. C. & Rickaby, R. E. M. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology 38, 1107–1110 (2010).
Lu, Z. et al. Oxygen depletion recorded in upper waters of the glacial Southern Ocean. Nat. Commun. 7, 11146 (2016).
Rohrssen, M., Love, G. D., Fischer, W., Finnegan, S. & Fike, D. A. Lipid biomarkers record fundamental changes in the microbial community structure of tropical seas during the Late Ordovician Hirnantian glaciation. Geology 41, 127–130 (2013).
Hardisty, D. S. et al. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth Planet. Sci. Lett. 463, 159–170 (2017).
Jones, D. S. et al. Sea level, carbonate mineralogy, and early diagenesis controlled δ13C records in Upper Ordovician carbonates. Geology 48, 194–199 (2020).
Hu, D. et al. 87Sr/86Sr evidence from the epeiric Martin Ridge Basin for enhanced carbonate weathering during the Hirnantian. Sci. Rep. 7, 11348 (2017).
Ahm, A.-S. C., Bjerrum, C. J. & Hammarlund, E. U. Disentangling the record of diagenesis, local redox conditions, and global seawater chemistry during the latest Ordovician glaciation. Earth Planet. Sci. Lett. 459, 145–156 (2017).
Ridgwell, A. et al. Marine geochemical data assimilation in an efficient Earth system model of global biogeochemical cycling. Biogeosciences 4, 87–104 (2007).
Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).
Porada, P. et al. High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician. Nat. Commun. 7, 12113 (2016).
Scotese, C. R. & Wright, N. PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic (PALEOMAP Project, 2018); https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/
Lenton, T. M., Daines, S. J. & Mills, B. J. W. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).
Lu, W. et al. Late inception of a resiliently oxygenated upper ocean. Science 5, eaar5372 (2018).
Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).
Finnegan, S. et al. The magnitude and duration of late Ordovician–early Silurian glaciation. Science 331, 903–906 (2011).
Trotter, J. A., Williams, I. S., Barnes, C. R., Lécuyer, C. & Nicoll, R. S. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321, 550–554 (2008).
Zhang, F. et al. Uranium isotopes in marine carbonates as a global ocean paleoredox proxy: a critical review. Geochim. Cosmochim. Acta 287, 27–49 (2020).
Steemans, P. et al. Origin and radiation of the earliest vascular land plants. Science 324, 353 (2009).
Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. First plants cooled the Ordovician. Nat. Geosci. 5, 86–89 (2012).
Garcia, H. E. & Gordon, L. I. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr. 37, 1307–1312 (1992).
Crichton, K. A., Wilson, J. D., Ridgwell, A. & Pearson, P. N. Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model. Geophys. Model Dev. 14, 125–149 (2021).
John, E. H., Wilson, J. D., Pearson, P. N. & Ridgwell, A. Temperature-dependent remineralization and carbon cycling in the warm Eocene oceans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 413, 158–166 (2014).
Torsvik, T. H. BugPlates: Linking Biogeography and Palaeogeography Software Installation (CEED, 2012); https://www.earthdynamics.org/software/Bugs2_SoftwareManual.pdf
Rose, B. E. J., Ferreira, D. & Marshall, J. The role of oceans and sea ice in abrupt transitions between multiple climate states. J. Clim. 26, 2862–2879 (2013).
Adkins, J. F. The role of deep ocean circulation in setting glacial climates. Paleoceanography 28, 539–561 (2013).
Ferreira, D., Marshall, J., Ito, T. & McGee, D. Linking glacial–interglacial states to multiple equilibria of climate. Geophys. Res. Lett. 45, 9160–9170 (2018).
Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2012).
Lu, W. et al. I/Ca in epifaunal benthic foraminifera: a semi-quantitative proxy for bottom water oxygen in a multi-proxy compilation for glacial ocean deoxygenation. Earth Planet. Sci. Lett. 533, 116055 (2020).
Delabroye, A. & Vecoli, M. The end-Ordovician glaciation and the Hirnantian Stage: a global review and questions about Late Ordovician event stratigraphy. Earth Sci. Rev. 98, 269–282 (2010).
McCracken, A. D. & Barnes, C. R. Conodont biostratigraphy and paleoecology of the Ellis Bay Formation, Anticosti Island, Quebec, with special reference to Late Ordovician–Early Silurian chronostratigraphy and the systemic boundary. Bull. Geol. Survey. Can. 329, 51–134 (1981).
Sheets, H. D. et al. Graptolite community responses to global climate change and the late ordovician mass extinction. Proc. Natl Acad. Sci. USA 113, 8380–8385 (2016).
Vandenbroucke, T. R. A. et al. Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction. Nat. Commun. 6, 1–7 (2015).
Desrochers, A. et al. A far-field record of the end Ordovician glaciation: the Ellis Bay Formation, Anticosti Island, Eastern Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 296, 248–263 (2010).
Finney, S. C., Berry, W. B. N., Cooper, J. D. & Ripperdan, R. L. Late Ordovician mass extinction: a new perspective from stratigraphic sections in central Nevada. Geology 27, 215–218 (1999).
Goldman, D. et al. in Geologic Time Scale 2020 (eds. Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) 631–694 (Elsevier, 2020).
Reinhard, C. T. Oceanic and atmospheric methane cycling in the cGENIE Earth system model. Geosci. Model Dev. 13, 5687–5706 (2020).
Osen, A. K., Winguth, A. M. E., Winguth, C. & Scotese, C. R. Sensitivity of Late Permian climate to bathymetric features and implications for the mass extinction. Glob. Planet. Change 105, 171–179 (2013).
Gough, D. O. Solar interior structure and luminosity variations*. Sol. Phys. 74, 21–34 (1981).
Jacob, R. L. Low Frequency Variability in a Simulated Atmosphere–Ocean System (Univ. of Wisconsin Madison, 1997).
Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 838373 (to A.P.), from NSF EAR-2121445, NSF EAR-1349252, OCE-1232620 and OCE-1736542 (to Z.L.), from the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant) and NSF 17-536 (to A.D.), from the David and Lucile Packard Foundation (to S.F.), from NSF grants 1736771 and EAR-2121165 and the Heising-Simons Foundation (2015-145) (to A.R.) and from the National Natural Science Foundation of China (41520104007, 41721002) (to Y.S. and M.L). Calculations were partly performed using HPC resources from the Centre de Calcul de l’Université de Bourgogne of Direction du Numérique.
Author information
Authors and Affiliations
Contributions
A.P., Z.L. S.F. and A.R. designed the study and wrote the manuscript with input from all co-authors. A.P. conducted the Fast Ocean Atmosphere Model and cGENIE experiments and led the analysis of the model results. Z.L., W.L. and R.H. carried out the I/Ca measurements. Z.L. led the analysis of the I/Ca results. R.G.S. conducted the mass balance modelling of the uranium isotope cycle.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Geoscience thanks Michael Melchin, Daniel Horton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor(s): James Super.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Latest Ordovician paleogeography.
(a) Latest Ordovician (445 Ma) reconstruction of Scotese and Wright22. (b) Bathymetry used in the cGENIE simulations, derived from (a). In the absence of a better estimate, the deep ocean is a flat bottom (ca. –4200 m). Names of the main continental masses and the Panthalassa Ocean are indicated on the map. Red dots show the location of the 2 sedimentary sections discussed in the text, where I/Ca data have been collected. km a.s.l.: km above sea level.
Extended Data Fig. 2 Box and whisker plot of I/Ca in the Late Ordovician and early Silurian.
Boxes mark the 25th and 75th percentiles of values at each time frame, horizontal lines in the box represent the median, and the whiskers show the maximum and minimum. See Fig. 1 for the age of each box and whisker plot. Two-group Mann-Whitney test indicates that I/Ca values in mid HICE versus late HICE are significantly different (p =2.3E-5 for Anticosti Island; p = 0.014 for Copenhagen Canyon).
Extended Data Fig. 4 Density plot illustrating the distribution of feux values (the fraction of global seafloor with euxinic bottom-waters) compatible with carbonate δ238U data from the Hirnantian-Rhuddanian ocean anoxic event7, using a stochastic, three-sink mass balance model8.
In this study we treat these estimates of euxinia as synonymous with anoxia, both due to limited understanding of uranium cycling in ferruginous environments and the lack of complex iron cycling in the current configuration of cGENIE.
Extended Data Fig. 5 Seafloor oxygen concentration simulated using an atmospheric pO2 of ×0.4 and pCO2 and PO4 inventory values of respectively (a) ×24 CO2 and ×0.4 [PO4], (b) ×8.5 CO2 and ×0.4 [PO4], (c) ×7 CO2 and ×0.2 [PO4] and (d) ×5 CO2 and ×0.6 [PO4].
Shifts from (a) to (b) and from (c) to (d) respectively represent Scenarios #1 and #2 (see Fig. 2). Emerged landmasses are shaded white and contoured with a thick black line. Shallow-water platforms are contoured with a thick black line. Seafloor oxygen concentration here represents the oxygen concentration simulated, for each point of the model grid, in the deepest ocean level. It does not represent the oxygen concentration at any given depth in the model but a draped benthic surface.
Extended Data Fig. 6 Extent of seafloor anoxia (defined as percentage of the total seafloor area characterized by a benthic ocean [O2] ≤ 0 μmol kg−1) simulated as a function of pCO2 (x-axis) and ocean PO4 inventory (y-axis), for pO2 levels of (a) ×1.0, (b) ×0.8, (c) ×0.6, (d) ×0.4 and (e) ×0.2.
Each cell is a cGENIE simulation. Values inside each cell and the colormap both represent the extent of anoxia.
Supplementary information
Supplementary information
Supplementary Figs. 1–22, methods, results and discussion.
Rights and permissions
About this article
Cite this article
Pohl, A., Lu, Z., Lu, W. et al. Vertical decoupling in Late Ordovician anoxia due to reorganization of ocean circulation. Nat. Geosci. 14, 868–873 (2021). https://doi.org/10.1038/s41561-021-00843-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-021-00843-9
This article is cited by
-
Impact of global climate cooling on Ordovician marine biodiversity
Nature Communications (2023)
-
Continental configuration controls ocean oxygenation during the Phanerozoic
Nature (2022)
-
Different controls on the Hg spikes linked the two pulses of the Late Ordovician mass extinction in South China
Scientific Reports (2022)
-
Ordovician–Silurian true polar wander as a mechanism for severe glaciation and mass extinction
Nature Communications (2022)