Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stormier mid-Holocene southwest Indian Ocean due to poleward trending tropical cyclones

Abstract

Geological evidence of past storminess is fundamental for contextualizing long-term climate variability and investigating future climate. Unlike the Atlantic and Pacific basins, robust storminess reconstructions do not exist for most of the Indian Ocean, despite the hazard that tropical cyclones pose to the SE African margin. Here we combine seismic stratigraphy with analysis of marine sediment cores to look for regionally representative storm-related sediment deposits (tempestites) intercalated in shoreface sediments from the SW Indian Ocean off South Africa. Tempestites, represented by hummocky seismic units, whose sediments have clear marine geochemical signatures, are found to have been deposited between 7.0 and 4.8 cal kyr BP, when sea level was between 0 and +3 m above present. Deposition and preservation of the tempestites reflect unprecedented tropical cyclone impacts, associated with periods of strongly positive Indian Ocean Dipole anomalies and linked to warmer sea surface temperatures. Future climate projections suggest stronger positive IOD anomalies and further intensification and poleward migration of tropical cyclones, like their mid-Holocene predecessors. Given the rarity of tropical cyclone landfalls in South Africa, this urges a revaluation of hazards in areas along the SE African coast likely to become more vulnerable to landfalling tropical cyclones in the future.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Durban shelf and study area with multibeam bathymetry, seismic coverage and core sites.
Fig. 2: Zoomed in ultra-high-resolution seismic stratigraphy of the lower shoreface.
Fig. 3: Downcore variations and chronology.
Fig. 4: Lithologic and geochemical variations compared with major climatic oscillations in the SW Indian Ocean (SWIO).

Data availability

Samples and data (inorganic data, radiocarbon analyses) are respectively archived at the GeoB Core Repository and Pangaea (www.pangaea.de), both located at MARUM, University of Bremen.

Seismic and core data (geochemical, grain size and chronology) are available at Pangaea (www.pangaea.de). Modelling data and results are available on request from A.G. or C.L.

References

  1. Oliva, F., Viau, A. E., Peros, M. C. & Bouchard, M. Paleotempestology database for the western North Atlantic basin. Holocene 28, 1664–1671 (2018).

    Article  Google Scholar 

  2. Donnelly, J. P. et al. Sedimentary evidence of intense hurricane strikes from New Jersey. Geology 29, 615–618 (2001).

    Article  Google Scholar 

  3. Buynevich, I.V., FitzGerald, D.M., van Heteren, S. 2004. Sedimentary records of intense storms in Holocene barrier sequences, Maine, USA Marine Geology 210, 135-148.

  4. Siringan, J. W. & Anderson, J. B. Modern shoreface and inner-shelf storm deposits off the east Texas coast, Gulf of Mexico. J. Sediment. Res. B64, 99–110 (1994).

    Google Scholar 

  5. Tamura, T. & Masuda, F. Bed thickness characteristics of inner‐shelf storm deposits associated with a transgressive to regressive Holocene wave‐dominated shelf, Sendai coastal plain, Japan. Sedimentology 52, 1375–1395 (2005).

    Article  Google Scholar 

  6. Toomey, M. R., Curry, W. B., Donnelly, J. P. & van Hengstum, P. J. Reconstructing 7000 years of North Atlantic hurricane variability using deep-sea sediment cores from the western Great Bahama Bank. Paleoceanography 28, 31–41 (2013).

    Article  Google Scholar 

  7. Donnelly, J. P. & Woodruff, J. D. Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon. Nature 447, 465–468 (2007).

    Article  Google Scholar 

  8. Walsh, K. J. E. et al. Tropical cyclones and climate change. WIRES Clim. Change 7, 65–89 (2016).

    Article  Google Scholar 

  9. Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157–163 (2010).

    Article  Google Scholar 

  10. Tory, K. J. & Dare, R. A. Sea Surface Temperature Thresholds for Tropical Cyclone Formation. J. Clim. 28, 8171–8183 (2015).

    Article  Google Scholar 

  11. Kossin, J. P., Emanuel, K. A. & Vecchi, G. A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349–352 (2014).

    Article  Google Scholar 

  12. Kirtman, et al, 2013: Near-term Climate Change: Projections and Predictability. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  13. Nott, J. & Hayne, M. High frequency of “super-cyclones” along the Great Barrier Reef over the past 5,000 years. Nature 413, 508–512 (2001).

    Article  Google Scholar 

  14. Liu, K., 2013. Paleotempestology. In: Encyclopedia of Quaternary Science, 2nd Edition. Eds S.A. Elias, C.J. Mock. Elsevier, Amsterdam, 209–221.

  15. Ash, K. D. & Matyas, C. J. The influences of ENSO and the subtropical Indian Ocean Dipole on tropical cyclone trajectories in the southwestern Indian Ocean. Int. J. Climatol. 32, 41–56 (2012).

    Article  Google Scholar 

  16. Fitchett, J. M. & Grab, S. W. A 66‐year tropical cyclone record for south‐east Africa: temporal trends in a global context. Int. J. Climatol. 34, 3604–3615 (2014).

    Article  Google Scholar 

  17. Muthige, M. S. et al. Projected changes in tropical cyclones over the South West Indian Ocean under different extents of global warming. Environ. Res. Lett. 13, 065019 (2018).

    Article  Google Scholar 

  18. Vidya, P. J. et al. Increased cyclone destruction potential in the Southern Indian Ocean. Environ. Res. Lett. 16, 014027 (2021).

    Article  Google Scholar 

  19. Frappier, A., Knutson, T., Liu, K.-B. & Emanuel, K. Perspective: coordinating paleoclimate research on tropical cyclones with hurricane-climate theory and modelling. Tellus A 59, 529–537 (2007).

    Article  Google Scholar 

  20. Green, A. N., Cooper, J. A. G. & Salzmann, L. Geomorphic and stratigraphic signals of postglacial meltwater pulses on continental shelves. Geology 42, 151–154 (2014).

    Article  Google Scholar 

  21. Cooper, J. A. G., Green, A. N. & Compton, J. Sea-level change in southern Africa since the last glacial maximum. Quat. Sci. Rev. 201, 303–318 (2018).

    Article  Google Scholar 

  22. Hamon-Kerivel, K., Cooper, J. A. G., Jackson, D. W. T., Sedrati, M. & Pintado, E. G. Shoreface mesoscale morphodynamics: A review. Earth Sci. Rev. 209, 103330 (2020).

    Article  Google Scholar 

  23. Pretorius, L., Green, A. N. & Cooper, J. A. G. Submerged shoreline preservation and ravinement during rapid post glacial sea-level rise and subsequent slowstand. Bull. Geol. Soc. Am. 128, 1059–1069 (2016).

    Article  Google Scholar 

  24. Eckau, W. Short cruise report RV Meteor—M102. University of Hamburg https://www.ldf.uni-hamburg.de/meteor/wochenberichte/wochenberichte-meteor/m101-m103/m102-scr.pdf (2014).

  25. Smith, A. M. et al. Contrasting styles of swell-driven coastal erosion: examples from KwaZulu-Natal, South Africa. Geol. Mag. 147, 940–953 (2010).

    Article  Google Scholar 

  26. Walker, R.G., Plint, A.G. in Facies Models: Response to Sea-Level Changes (eds Walker, R.G. & James, N.P.) 219–238 (Geological Association of Canada, 1992).

  27. Hampson, G. J. & Storms, J. E. A. Geomorphological and sequence stratigraphic variability in wave-dominated, shoreface-shelf parasequences. Sedimentology 50, 667–701 (2003).

    Article  Google Scholar 

  28. Cooper, J. A. G. & Mason, T. Barrier washover fans in the Beachwood Mangrove Area, Durban, South Africa: cause, morphology and environmental effect. J. Shorel. Manag. 2, 285–303 (1986).

    Google Scholar 

  29. Morton, R. A., Gelfenbaum, G. & Jaffe, B. E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment. Geol. 200, 184–207 (2007).

    Article  Google Scholar 

  30. Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B. & Dominey-Howes, D. Progress in palaeotsunami research. Sediment. Geol. 243–244, 70–88 (2012).

    Article  Google Scholar 

  31. Murray, A. B. & Thieler, E. R. A new hypothesis and exploratory model for the formation of large-scale inner-shelf sediment sorting and “rippled scour depressions”. Cont. Shelf Res. 24, 295–315 (2004).

    Article  Google Scholar 

  32. Goff, J. A. et al. Detailed investigation of sorted bedforms, or “rippled scour depressions,” within the Martha’s Vineyard Coastal Observatory, Massachusetts. Cont. Shelf Res. 25, 461–484 (2005).

    Article  Google Scholar 

  33. Trembanis, A. C. & Hume, T. M. Sorted bedforms on the inner shelf off northeastern New Zealand: spatiotemporal relationships and potential paleo-environmental implications. Geol. Mar. Lett. 31, 203–214 (2011).

    Article  Google Scholar 

  34. Peltier, W. R. & Fairbanks, R. G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 25, 3322–3337 (2006).

    Article  Google Scholar 

  35. Keen, T. R., Bentley, S. J., Vaughan, W. C. & Blain, C. A. The generation and preservation of multiple hurricane beds in the northern Gulf of Mexico. Mar. Geol. 210, 79–105 (2004).

    Article  Google Scholar 

  36. Bentley, S. J., Keen, T. R., Blain, C. A. & Vaughan, W. C. The origin and preservation of a major hurricane event bed in the northern Gulf of Mexico: Hurricane Camille, 1969. Mar. Geol. 186, 423–446 (2002).

    Article  Google Scholar 

  37. Ramsay, A. H., Camargo, S. J. & Kim, D. Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Clim. Dyn. 39, 897–917 (2012).

    Article  Google Scholar 

  38. van Hengstum, P. J. et al. Heightened hurricane activity on the Little Bahama Bank from 1350 to 1650 AD. Cont. Shelf Res. 86, 103–115 (2014).

    Article  Google Scholar 

  39. Fitchett, J. M. Recent emergence of CAT5 tropical cyclones in the South Indian Ocean. S. Afr. J. Sci. 114, 6 (2018).

    Article  Google Scholar 

  40. Reason, C. & Keibel, A. Tropical cyclone Eline and its unusual penetration and impacts over the Southern African mainland. Weather Forecast. 19, 789–805 (2004).

    Article  Google Scholar 

  41. Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H. R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005).

    Article  Google Scholar 

  42. Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    Article  Google Scholar 

  43. Kuhnert, H. et al. Holocene tropical western Indian Ocean sea surface temperatures in covariation with climatic changes in the Indonesian region. Paleoceanography 29, 423–437 (2014).

    Article  Google Scholar 

  44. Webster, P. J., Moore, A. M., Loschnigg, J. P. & Leben, R. R. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401, 356–360 (1999).

    Article  Google Scholar 

  45. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Climatol. 20, 4316–4340 (2007).

    Article  Google Scholar 

  46. Cai, W. et al. Projected response of the Indian Ocean Dipole to greenhouse warming. Nat. Geosci. 6, 999–1007 (2013).

    Article  Google Scholar 

  47. Zheng, X. T. et al. Indian Ocean dipole response to global warming in the CMIP5 multimodel ensemble. J. Clim. 26, 6067–6080 (2013).

    Article  Google Scholar 

  48. Ding, R. & Li, J. Influences of ENSO teleconnection on the persistence of sea surface temperature in the tropical Indian Ocean. J. Clim. 25, 8177–8195 (2012).

    Article  Google Scholar 

  49. Gadgil, S., Vinayachandran, P. N., Francis, P. A. & Gadgil, S. Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys. Res. Lett. 31, L12213 (2004).

    Article  Google Scholar 

  50. Deshpande, A., Chowdary, J. S. & Gnanaseelan, C. Role of thermocline SST coupling in the evolution of IOD events and their regional impacts. Clim. Dyn. 43, 163–174 (2014).

    Article  Google Scholar 

  51. Cai, W. et al. Opposite reponse of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Change 11, 27–32 (2021).

    Article  Google Scholar 

  52. Reason, C. J. C. Subtropical Indian Ocean SST dipole events and southern African rainfall. Geophys. Res. Lett. 28, 2225–2227 (2001).

    Article  Google Scholar 

  53. Wang, Y. et al. The Holocene Asian Monsoon: links to solar changes and North Atlantic climate. Science 308, 854–857 (2005).

    Article  Google Scholar 

  54. Abram, N. J. et al. Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch. Nature 445, 299–302 (2007).

    Article  Google Scholar 

  55. Fleitmann, D. et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat. Sci. Rev. 26, 170–188 (2007).

    Article  Google Scholar 

  56. Mohtadi, M. et al. Glacial to Holocene swings of the Australian–Indonesian monsoon. Nat. Geosci. 4, 540–544 (2011).

    Article  Google Scholar 

  57. De Boer, E. J. et al. Climate variability in the SW Indian Ocean from an 8000-yr long multi-proxy record in the Mauritian lowlands shows a middle to late Holocene shift from negative IOD-state to ENSO-state. Quat. Sci. Rev. 86, 175–189 (2014).

    Article  Google Scholar 

  58. Bard, E., Rostek, F. & Sonzogni, C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385, 707–710 (1997).

    Article  Google Scholar 

  59. Malherbe, J., Engelbrecht, F. A. & Landman, W. A. Projected changes in tropical cyclone climatology and landfall in the Southwest Indian Ocean region under enhanced anthropogenic forcing. Clim. Dyn. 40, 2867–2886 (2013).

    Article  Google Scholar 

  60. Holland, G. & Bruyere, C. L. Recent intense hurricane response to global climate change. Clim. Dyn. 42, 617–627 (2014).

    Article  Google Scholar 

  61. Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258 (2014).

    Article  Google Scholar 

  62. Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).

    Article  Google Scholar 

  63. Corbella, S. & Stretch, D. The wave climate on the KwaZulu-Natal coast of South Africa. J. South Afr. Inst. Civ. Eng. 54, 45–54 (2012a).

    Google Scholar 

  64. Moes, H., Rossouw, M., 2008. Considerations for the utilization of wave power around South Africa. Workshop on Ocean Energy, Centre for Renewable and Sustainable Energy Studies, Stellenbosch, 21, February 2008, Abstracts.

  65. Mather, A. A. & Stretch, D. D. A perspective on sea level rise and coastal storm surge from Southern and Eastern Africa: a case study near Durban, South Africa. Water 4, 237–259 (2012).

    Article  Google Scholar 

  66. Corbella, S. & Stretch, D. Multivariate return periods of sea storms for coastal erosion risk assessment. Nat. Hazards Earth Syst. Sci. 12, 2699–2708 (2012b).

    Article  Google Scholar 

  67. Green, A. N., Dladla, N. & Garlick, G. L. Spatial and temporal variations in incised valley systems from the Durban continental shelf, KwaZulu-Natal, South Africa. Mar. Geol. 335, 148–161 (2013).

    Article  Google Scholar 

  68. Maboya, M., Meadows, M., Reimer, P., Backeberg, B. & Haberzettl, T. Late Holocene marine radiocarbon reservoir correction for the southern and eastern coasts of South Africa. Radiocarbon 60, 571–582 (2018).

    Article  Google Scholar 

  69. Booij, N., Ris, R. C. & Holthuijsen, L. H. A third-generation wave model for coastal regions - 1. Model description and validation. J. Geophys. Res. 104, 7649–7666 (1999).

    Article  Google Scholar 

  70. Ris, R. C., Holthuijsen, L. H. & Booij, N. A third-generation wave model for coastal regions - 2. Verif. J. Geophys. Res. 104, 7667–7681 (1999).

    Article  Google Scholar 

  71. Loureiro, C., Ferreira, Ó. & Cooper, J. A. G. Extreme erosion on high-energy embayed beaches: influence of megarips and storm grouping. Geomorphology 139–140, 155–171 (2012).

    Article  Google Scholar 

  72. Soulsby R. Dynamics of Marine Sands: A Manual for Practical Applications (Thomas Telford, 1997).

  73. Holthuijsen L.H., Waves in Oceanic and Coastal Waters (Cambridge Univ. Press, 2007).

  74. Blott, S. & Pye, K. Particle size scales and classification of sediment types based on particle size distributions: review and recommended procedures. Sedimentology 59, 2071–2096 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Bundesministerium für Bildung und Forschung (BMBF, Germany) within the project Regional Archives for Integrated Investigations (RAiN, 03G0840A) (M.Z.). We thank the captain, crew and scientists of the METEOR M102 cruise for facilitating the recovery of the studied material, and eThekwini Municipality for access to multibeam bathymetry.

Author information

Authors and Affiliations

Authors

Contributions

A.G. led the paper conceptualization, data collection, analysis and figure drafting, and together with J.A.G.C. managed the paper writing and editorial review. C.L. performed the modelling and assisted in data analysis, writing, figure drafting and editorial review. S.D. performed the laboratory analyses and figure drafting. A.H. and M.Z. assisted with data collection, writing and editorial review. M.Z. was the principal funding recipient.

Corresponding author

Correspondence to A. N. Green.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks John Goff, Stefano Patruno and Maarten Van Daele for their contribution to the peer review of this work. Primary Handling Editor(s) James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Seismic reflection profiles and interpretations of the seismic stratigraphy of the Durban shelf.

a, full record including Fig. 2a. b, full record including Fig. 2b.

Extended Data Fig. 2 Bed shear stress represented according to the thresholds for sediment mobility.

Model results for the largest recorded storm offshore Durban for: a, coarse sand, b, fine gravel, and the 100 yr return-period storm for c, coarse sand, d, fine gravel. Areas below threshold are blanked. Note that at the GeoB18304-1 site, granule-size sediment would be mobilised, but not at the GeoB18303-2 site.

Supplementary information

Supplementary information

Supplementary table.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Green, A.N., Cooper, J.A.G., Loureiro, C. et al. Stormier mid-Holocene southwest Indian Ocean due to poleward trending tropical cyclones. Nat. Geosci. 15, 60–66 (2022). https://doi.org/10.1038/s41561-021-00842-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00842-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing