Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent strengthening of snow and ice albedo feedback driven by Antarctic sea-ice loss


The decline of the Arctic cryosphere during recent decades has lowered the region’s surface albedo, reducing its ability to reflect solar radiation back to space. It is not clear what role the Antarctic cryosphere plays in this regard, but new remote-sensing-based techniques and datasets have recently opened the possibility to investigate its role. Here, we leverage these to show that the surface albedo reductions from sustained post-2000 losses in Arctic snow and ice cover equate to increasingly positive snow and ice albedo feedback relative to a 1982–1991 baseline period, with a decadal trend of +0.08 ± 0.04 W m–2 decade–1 between 1992 and 2015. During the same period, the expansion of the Antarctic sea-ice pack generated a negative feedback, with a decadal trend of −0.06 ± 0.02 W m–2 decade–1. However, substantial Antarctic sea-ice losses during 2016–2018 completely reversed the trend, increasing the three-year mean combined Arctic and Antarctic snow and ice albedo feedback to +0.26 ± 0.15 W m–2. This reversal highlights the importance of Antarctic sea-ice loss to the global snow and ice albedo feedback. The 1992–2018 mean feedback is equivalent to approximately 10% of anthropogenic CO2 emissions over the same period; the share may rise markedly should 2016–2018 snow and ice conditions become common, although increasing long-wave emissions will probably mediate the impact on the total radiative-energy budget.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Annual global mean SIAF from radiative kernels and satellite-observed surface albedo changes.
Fig. 2: Three-year global annual mean SIAF induced primarily by cryospheric albedo changes.
Fig. 3: Three-year mean SIAF with the CACK kernel over the Antarctic relative to the baseline period of 1982–1991.
Fig. 4: Inferring the global cryospheric SIAF from the CERES (EBAF v4.1) record.

Data availability

The principal result data (annual global radiative forcings per kernel and region) are available from The CLARA-A2.1 albedo data are available from The CC radiative kernel is available from The CACK radiative kernel is available from NSIDC-0046 and G02202 snow/sea-ice data records are available through ESA-CCI LC data are available from the ESA Climate Change Initiative through The CERES EBAF Edition 4.1 dataset is available through Source data are provided with this paper.

Code availability

Principal data analysis codes are available from


  1. Sledd, A. & L’Ecuyer, T. How much do clouds mask the impacts of Arctic sea ice and snow cover variations? Different perspectives from observations and reanalyses. Atmosphere 10, 12 (2019).

    Article  Google Scholar 

  2. Flanner, M. G., Shell, K. M., Barlage, M., Perovich, D. K. & Tschudi, M. A. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat. Geosci. 4, 151–155 (2011).

    Article  Google Scholar 

  3. Loeb, N., Thorsen, T., Norris, J., Wang, H. & Su, W. Changes in Earth’s energy budget during and after the ‘pause’ in global warming: an observational perspective. Climate 6, 62 (2018).

    Article  Google Scholar 

  4. Chung, E.-S. & Soden, B. J. An assessment of methods for computing radiative forcing in climate models. Environ. Res. Lett. 10, 074004 (2015).

    Article  Google Scholar 

  5. Dong, X. et al. A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska. J. Geophys. Res. Atmos. 115, D17212 (2010).

    Article  Google Scholar 

  6. Zhang, R., Wang, H., Fu, Q., Rasch, P. J. & Wang, X. Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s. Proc. Natl Acad. Sci. USA 116, 23947–23953 (2019).

    Article  Google Scholar 

  7. Karlsson, K. G. et al. CLARA-A2: the second edition of the CM SAF cloud and radiation data record from 34 years of global AVHRR data. Atmos. Chem. Phys. 17, 5809–5828 (2017).

    Article  Google Scholar 

  8. Anttila, K., Jääskeläinen, E., Riihelä, A., Manninen, T. & Andersson, K. Validation Report for Surface Albedo (SAL) in the CLARA-A2 CM SAF Cloud, Albedo, Radiation Data Record, AVHRR-Based Edition 2, (EUMETSAT CM SAF, 2016).

  9. Riihelä, A., King, M. D. & Anttila, K. The surface albedo of the Greenland Ice Sheet between 1982 and 2015 from the CLARA-A2 dataset and its relationship to the ice sheet’s surface mass balance. Cryosphere 13, 2597–2614 (2019).

    Article  Google Scholar 

  10. Kramer, R. J., Matus, A. V., Soden, B. J. & L’Ecuyer, T. S. Observation‐based radiative kernels from CloudSat/CALIPSO. J. Geophys. Res. Atmos. 124, 5431–5444 (2019).

    Article  Google Scholar 

  11. Bright, R. M. & O’Halloran, T. L. Developing a monthly radiative kernel for surface albedo change from satellite climatologies of Earth’s shortwave radiation budget: CACK v1.0. Geosci. Model Dev. 12, 3975–3990 (2019).

    Article  Google Scholar 

  12. Loeb, N. G. et al. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Clim. 31, 895–918 (2018).

    Article  Google Scholar 

  13. Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).

    Article  Google Scholar 

  14. Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environ. Res. Lett. 13, 105005 (2018).

    Article  Google Scholar 

  15. Wang, L., Derksen, C., Brown, R. & Markus, T. Recent changes in pan‐Arctic melt onset from satellite passive microwave measurements. Geophys. Res. Lett. 40, 522–528 (2013).

    Article  Google Scholar 

  16. Anttila, K., Manninen, T., Jääskeläinen, E., Riihelä, A. & Lahtinen, P. The role of climate and land use in the changes in surface albedo prior to snow melt and the timing of melt season of seasonal snow in northern land areas of 40° N–80° N during 1982–2015. Remote Sens. 10, 1619 (2018).

    Article  Google Scholar 

  17. Jeffries, M. O., Richter-Menge, J. A. & Overland, J. E. (eds) Arctic Report Card 2013, (NOAA, 2013).

  18. Parkinson, C. L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl Acad. Sci. USA 116, 14414–14423 (2019).

    Article  Google Scholar 

  19. Letterly, A., Key, J. & Liu, Y. Arctic climate: changes in sea ice extent outweigh changes in snow cover. Cryosphere 12, 3373–3382 (2018).

    Article  Google Scholar 

  20. Turner, J. et al. Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophys. Res. Lett. 44, 6868–6875 (2017).

    Article  Google Scholar 

  21. Wang, G. et al. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nat. Commun. 10, 13 (2019).

    Article  Google Scholar 

  22. Meehl, G. A. et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun. 10, 14 (2019).

    Article  Google Scholar 

  23. Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Sea Ice Index Version 3, (NSIDC, accessed 1 October 2020).

  24. Meier, W. N. et al. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration Version 3, (NSIDC, accessed 1 October 2020).

  25. Kern, S., Lavergne, T., Notz, D., Pedersen, L. T. & Tonboe, R. Satellite passive microwave sea-ice concentration data set inter-comparison for Arctic summer conditions. Cryosphere 14, 2469–2493 (2020).

    Article  Google Scholar 

  26. Pistone, K., Eisenman, I. & Ramanathan, V. Radiative heating of an ice‐free Arctic Ocean. Geophys. Res. Lett. 46, 7474–7480 (2019).

    Article  Google Scholar 

  27. Schlosser, E., Haumann, F. A. & Raphael, M. N. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay. Cryosphere 12, 1103–1119 (2018).

    Article  Google Scholar 

  28. Wang, Z., Turner, J., Wu, Y. & Liu, C. Rapid decline of total Antarctic sea ice extent during 2014–16 controlled by wind-driven sea ice drift. J. Clim. 32, 5381–5395 (2019).

    Article  Google Scholar 

  29. Kashiwase, H., Ohshima, K. I., Nihashi, S. & Eicken, H. Evidence for ice–ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone. Sci. Rep. 7, 8170 (2017).

    Article  Google Scholar 

  30. Eayrs, C., Li, X., Raphael, M. N. & Holland, D. M. Rapid decline in Antarctic sea ice in recent years hints at future change. Nat. Geosci. 14, 460–464 (2021).

    Article  Google Scholar 

  31. Jones, J. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change 6, 917–926 (2016).

    Article  Google Scholar 

  32. Roach, L. A. et al. Antarctic sea ice area in CMIP6. Geophys. Res. Lett. 47, e2019GL086729 (2020).

    Article  Google Scholar 

  33. Chemke, R. & Polvani, L. M. Using multiple large ensembles to elucidate the discrepancy between the 1979–2019 modeled and observed Antarctic sea ice trends. Geophys. Res. Lett. 47, e2020GL088339 (2020).

    Google Scholar 

  34. Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

  35. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  36. Donohoe, A., Blanchard-Wrigglesworth, E., Schweiger, A. & Rasch, P. J. The effect of atmospheric transmissivity on model and observational estimates of the sea ice albedo feedback. J. Clim. 33, 5743–5765 (2020).

    Article  Google Scholar 

  37. Hall, A. The role of surface albedo feedback in climate. J. Clim. 17, 1550–1568 (2004).

    Article  Google Scholar 

  38. Platnick, S. et al. The MODIS cloud products: algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens. 41, 459–473 (2003).

    Article  Google Scholar 

  39. Kay, J. E. & Gettelman, A. Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res. Atmos. 114 (2009).

  40. Tomasi, C. et al. An update on polar aerosol optical properties using POLAR-AOD and other measurements performed during the International Polar Year. Atmos. Environ. 52, 29–47 (2012).

    Article  Google Scholar 

  41. Donohoe, A. & Battisti, D. S. Atmospheric and surface contributions to planetary albedo. J. Clim. 24, 4402–4418 (2011).

    Article  Google Scholar 

  42. Heidinger, A. K., Straka, W. C., Molling, C. C., Sullivan, J. T. & Wu, X. Q. Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record. Int. J. Remote Sens. 31, 6493–6517 (2010).

    Article  Google Scholar 

  43. Jääskeläinen, E., Manninen, T., Tamminen, J. & Laine, M. The Aerosol Index and Land Cover Class Based Atmospheric Correction Aerosol Optical Depth Time Series 1982–2014 for the SMAC algorithm. Remote Sens. 9, 1095 (2017).

    Article  Google Scholar 

  44. Manninen, T., Jääskeläinen, E. & Riihelä, A. Black and white-sky albedo values of snow: in situ relationships for AVHRR-based estimation using CLARA-A2 SAL. Can. J. Remote Sens. 45, 350–367 (2019).

    Article  Google Scholar 

  45. Brodzik, M. J. & Armstrong, R. Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent Version 4, (NSIDC, accessed 1 August 2020).

  46. Séférian, R. et al. An interactive ocean surface albedo scheme (OSAv1. 0): formulation and evaluation in ARPEGE-Climat (V6. 1) and LMDZ (V5A). Geosci. Model Dev. 11, 321–338 (2018).

    Article  Google Scholar 

  47. Schaaf, C. B. et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 83, 135–148 (2002).

Download references


Work of A.R. has been financially supported by the Academy of Finland, decision 309125, and R.M.B. through the Research Council of Norway, project number 294948 (EMERALD). Natural Earth map dataset is acknowledged as the coastline data source in spatially resolved figures.

Author information

Authors and Affiliations



A.R. designed the study and performed the SIAF calculations. R.M.B. contributed CACK data with updated uncertainty estimates, analysed CACK–CC differences and carried out the CERES EBAF analysis. K.A. supported the SIAF analysis and analysed potential aerosol impacts. A.R., R.M.B. and K.A. all contributed to the writing of the manuscript.

Corresponding author

Correspondence to Aku Riihelä.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Aaron Donohoe, Chad Thackeray and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas Richardson, in collaboration with the Nature Geoscience team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, descriptions and text.

Source data

Source Data Fig. 1

Source data for line plots and uncertainty envelopes.

Source Data Fig. 2

Source data for bar charts in figure.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Riihelä, A., Bright, R.M. & Anttila, K. Recent strengthening of snow and ice albedo feedback driven by Antarctic sea-ice loss. Nat. Geosci. 14, 832–836 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing