Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Delayed and variable late Archaean atmospheric oxidation due to high collision rates on Earth

Abstract

Frequent violent collisions of impactors from space punctuated the geological and atmospheric evolution of early Earth. It is generally accepted that the most massive collisions altered the chemistry of Earth’s earliest atmosphere, but the consequences of Archaean collisions for atmospheric oxidation are little understood. Early Archaean (4.0–3.5 billion years ago (Ga)) impact flux models are tightly constrained by lunar cratering and radiometric data. Further, a record of the late Archaean (3.5–2.5 Ga) impact flux is provided by terrestrial impact spherule layers—formed by collisions with bodies ≥10–20 km in diameter—although this record is probably incomplete and significant uncertainties remain. Here we show, on the basis of an assessment of impactor-related spherule records and modelling of the atmospheric effects of these impacts, that current bombardment models underestimate the number of late Archaean spherule layers. These findings suggest that the late Archaean impactor flux was up to a factor of ten higher than previously thought. We find that the delivered impactor mass was an important sink of oxygen, suggesting that early bombardment could have delayed Earth’s atmosphere oxidation. In addition, late Archaean large impacts (≥10 km) probably caused drastic oscillations of atmospheric oxygen, with an average time between consecutive collisions of about 15 Myr. This pattern is consistent with a known episode of atmospheric oxygen oscillation at ~2.5 Ga that is bracketed by large impacts recorded by Bee Gorge (~2.54 Ga) and Dales Gorge (~2.49 Ga) spherule layers.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Lunar impact fluxes.
Fig. 2: Earth’s collisional history and Archaean spherule layers.
Fig. 3: Impact-related oxygen sinks.

Data availability

Data supporting the findings of this study are available within the main articles, Methods and Extended Data. Input data used for the figures are available upon request. All new data associated with this paper will be made publicly available at https://doi.org/10.6084/m9.figshare.c.5543898.v1

References

  1. Catling, D. C. in Treatise on Geochemistry (eds Holland, H. D. & Turekian, K. K.) 177–195 (Elsevier, 2014); https://doi.org/10.1016/B978-0-08-095975-7.01307-3

  2. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth‘s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  Google Scholar 

  3. Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014).

    Article  Google Scholar 

  4. Bottke, W. F. & Norman, M. D. The late heavy bombardment. Annu. Rev. Earth Planet. Sci. 45, 619–647 (2017).

    Article  Google Scholar 

  5. Zahnle, K. J., Lupu, R., Catling, D. C. & Wogan, N. Creation and evolution of impact-generated reduced atmospheres of early Earth. Planet. Sci. J. 1, 11 (2020).

    Article  Google Scholar 

  6. Bottke, W. F. et al. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012).

    Article  Google Scholar 

  7. Nesvorný, D., Roig, F. & Bottke, W. F. Modeling the historical flux of planetary impactors. Astron. J. 153, 103 (2017).

    Article  Google Scholar 

  8. Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018).

    Article  Google Scholar 

  9. Vokrouhlický, D., Bottke, W. F., Chesley, S. R., Scheeres, D. J. & Statler, T. S. in Asteroids IV (eds Michel, P. et al.) 509–531 (Univ. Arizona Press, 2015).

  10. Johnson, B. C. et al. Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors. Icarus 271, 350–359 (2016).

    Article  Google Scholar 

  11. Nesvorný, D. & Roig, F. Dynamical origin and terrestrial impact flux of large near-Earth asteroids. Astron. J. 155, 42 (2018).

    Article  Google Scholar 

  12. Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde 69, 101–125 (2009).

    Article  Google Scholar 

  13. Marchi, S., Canup, R. M. & Walker, R. J. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11, 77–81 (2018).

    Article  Google Scholar 

  14. Melosh, H. J. & Vickery, A. M. Melt droplet formation in energetic impact events. Nature 350, 494–497 (1991).

    Article  Google Scholar 

  15. Johnson, B. C. & Melosh, H. J. Impact spherules as a record of an ancient heavy bombardment of Earth. Nature 485, 75–77 (2012).

    Article  Google Scholar 

  16. Glass, B. P. & Simonson, B. M. Distal Impact Ejecta Layers: A Record of Large Impacts in Sedimentary Deposits (Springer, 2013).

  17. Koeberl, C., Schulz, T. & Reimold, W. U. Remnants of early Archean impact deposits on Earth: search for a meteoritic component in the BARB5 and CT3 drill cores (Barberton Greenstone Belt, South Africa). Procedia Eng. 103, 310–317 (2015).

    Article  Google Scholar 

  18. Mohr-Westheide, T. et al. Discovery of extraterrestrial component carrier phases in Archean spherule layers: implications for estimation of Archean bolide sizes. Geology 43, 299–302 (2015).

    Article  Google Scholar 

  19. Drabon, N., Heubeck, C. E. & Lowe, D. R. Evolution of an Archean fan delta and its implications for the initiation of uplift and deformation in the Barberton greenstone belt, South Africa. J. Sediment. Res. 89, 849–874 (2019).

    Article  Google Scholar 

  20. Schulz, T. et al. New constraints on the Paleoarchean meteorite bombardment of the Earth—Geochemistry and Re–Os isotope signatures of the BARB5 ICDP drill core from the Barberton Greenstone Belt, South Africa. Geochim. Cosmochim. Acta 211, 322–340 (2017).

    Article  Google Scholar 

  21. Ozdemir, S. et al. Early Archean spherule layers from the Barberton Greenstone Belt, South Africa: mineralogy and geochemistry of the spherule beds in the CT3 drill core. Meteorit. Planet. Sci. 52, 2586–2631 (2017).

    Article  Google Scholar 

  22. Reimold W. U., Koeberl C., Johnson S. & McDonald I. in Impacts and the Early Earth (eds Gilmour, I. & Koeberl, C.) 117–180 (Springer, 2000).

  23. Ozdemir, S. et al. Meteoritic highly siderophile element and Re–Os isotope signatures of Archean spherule layers from the CT3 drill core, Barberton Greenstone Belt, South Africa. Meteorit. Planet. Sci. 54, 2203–2216 (2019).

    Article  Google Scholar 

  24. Hassler, S. W., Robey, H. F. & Simonson, B. M. Bedforms produced by impact-generated tsunami, ~2.6 Ga Hamersley basin, Western Australia. Sediment. Geol. 135, 283–294 (2000).

    Article  Google Scholar 

  25. Glikson, A. & Allen, D. Iridium anomalies and fractionated siderophile element patterns in impact ejecta, Brockman Iron Formation, Hamersley basin, Western Australia: evidence for a major asteroid impact in simatic crustal regions of the early Proterozoic Earth. Earth Planet. Sci. Lett. 220, 247–264 (2004).

    Article  Google Scholar 

  26. Paquay, F. S., Ravizza, G. E., Dalai, T. K. & Peucker-Ehrenbrink, B. Determining chondritic impactor size from the marine osmium isotope record. Science 320, 214–218 (2008).

    Article  Google Scholar 

  27. Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011).

    Article  Google Scholar 

  28. Kump, L. R. & Barley, M. E. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007).

    Article  Google Scholar 

  29. Schaefer, L. & Fegley, B. Jr Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus 186, 462–483 (2007).

    Article  Google Scholar 

  30. Hashimoto, G. L., Abe, Y. & Sugita, S. The chemical composition of the early terrestrial atmosphere: formation of a reducing atmosphere from CI-like material. J. Geophys. Res. 112, E05010 (2007).

    Google Scholar 

  31. Claire, M., Catling, D. & Zahnle, K. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006).

    Article  Google Scholar 

  32. Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    Article  Google Scholar 

  33. Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).

    Article  Google Scholar 

  34. Kendall, B., Creaser, R. A., Reinhard, C. T., Lyons, T. W. & Anbar, A. D. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean. Sci. Adv. 1, e1500777 (2015).

    Article  Google Scholar 

  35. Neukum, G. & Ivanov, B. A. in Hazards Due to Comets and Asteroids (eds Gehrels, T. et al.) 359–416 (Univ. Arizona Press, 1994).

  36. Marchi, S., Mottola, S., Cremonese, G., Massironi, M. & Martellato, E. A new chronology for the Moon and Mercury. Astron. J. 137, 4936–4948 (2009).

    Article  Google Scholar 

  37. Robbins, S. J. New crater calibrations for the lunar crater-age chronology. Earth Planet. Sci. Lett. 403, 188–198 (2014).

    Article  Google Scholar 

  38. Morbidelli, A. et al. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355–356, 144–151 (2012); https://doi.org/10.1016/j.epsl.2012.07.037

  39. Bottke, W. F. et al. Interpreting the cratering histories of Bennu, Ryugu, and other spacecraft-explored asteroids. Astron. J. 160, 14 (2020).

    Article  Google Scholar 

  40. Bottke, W. F. et al. Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus 179, 63–94 (2005).

    Article  Google Scholar 

  41. Harris, A. W. & D’Abramo, G. The population of near-Earth asteroids. Icarus 257, 302–312 (2015).

    Article  Google Scholar 

  42. Holsapple, K. A. & Housen, K. R. A crater and its ejecta: an interpretation of deep impact. Icarus 187, 345–356 (2007).

    Article  Google Scholar 

  43. Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, 1989).

  44. Kirchoff, M. R. et al. Ages of large lunar impact craters and implications for bombardment during the Moon’s middle age. Icarus 225, 325–341 (2013).

    Article  Google Scholar 

  45. Kirchoff, M. R., Marchi, S., Bottke, W. F., Chapman, C. R. & Enke, B. Suggestion that recent (≤3 Ga) flux of kilometer and larger impactors in the Earth–Moon system has not been constant. Icarus 355, 114110 (2021).

    Article  Google Scholar 

  46. Brasser, R., Werner, S. C. & Mojzsis, S. J. Impact bombardment chronology of the terrestrial planets from 4.5 Ga to 3.5 Ga. Icarus 338, 113514 (2020).

    Article  Google Scholar 

  47. Lowe, D. R., Byerly, G. R. & Kyte, F. T. Recently discovered 3.42–3.23 Ga impact layers, Barberton Belt, South Africa: 3.8 Ga detrital zircons, Archean impact history, and tectonic implications. Geology 42, 747–750 (2014).

    Article  Google Scholar 

  48. Lowe, D. R., Byerly, G. R., Asaro, F. & Kyte, F. T. Geological and geochemical record of 3400-million-year-old terrestrial meteorite impacts. Science 245, 959–962 (1989).

    Article  Google Scholar 

  49. Lowe, D. R. et al. Spherule beds 3.47–3.24 billion years old in Barberton Greenstone Belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution. Astrobiology 3, 7–48 (2003).

    Article  Google Scholar 

  50. Koeberl, C. in Processes on the Early Earth (eds Reimold, W. U. & Gibson, R.) Special Paper 405, Ch. 1, 1–22 (Geological Society of America, 2006).

  51. Hofmann, A., Reimold, W. U. & Koeberl, C. in Processes on the Early Earth (eds Reimold, W. U. & Gibson, R.) 33–56 (Geological Society of America, 2006).

  52. Goncalves de Oliveira, G. J. et al. Petrographic characterization of Archaean impact spherule layers from Fairview Gold Mine, northern Barberton Greenstone Belt, South Africa. J. Afr. Earth Sci. 162, 103718 (2020).

    Article  Google Scholar 

  53. Lowe, D. R. & Byerly, G. R. Reply to comments on ‘Early Archean silicate spherules of probable impact origin, South Africa and Western Australia’. Geology 15, 179–180 (1987).

    Article  Google Scholar 

  54. Kyte, F. T., Zhou, L. & Lowe, D. R. Noble metal abundances in an early Archean impact deposit. Geochim. Cosmochim. Acta 56, 1365–1372 (1992).

    Article  Google Scholar 

  55. Byerly, G. R. & Lowe, D. R. Spinel from Archean impact spherules. Geochim. Cosmochim. Acta 58, 3469–3486 (1994).

    Article  Google Scholar 

  56. Glass, B. P. & Koeberl, C. ODP hole 689B spherules and upper Eocene microtektite and clinopyroxene-bearing spherule strewn fields. Meteorit. Planet. Sci. 34, 197–208 (1999).

    Article  Google Scholar 

  57. Smit, J. The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Annu. Rev. Earth Planet. Sci. 27, 75–113 (1999).

    Article  Google Scholar 

  58. Pierazzo, E., Kring, D. A. & Melosh, H. J. Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. J. Geophys. Res. 103, 28607–28625 (1998).

    Article  Google Scholar 

  59. Bluth, G. J. S., Doiron, S. D., Schnetzler, C. C., Krueger, A. J. & Walter, L. S. Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophys. Res. Lett. 19, 151–154 (1992).

    Article  Google Scholar 

  60. Melosh, H. J., Schneider, N. M., Zahnle, K. J. & Latham, D. Ignition of global wildfires at the Cretaceous/Tertiary boundary. Nature 343, 251–254 (1990).

    Article  Google Scholar 

  61. Zahnle, K. J. in Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality (eds Sharpton, V. L. & Ward, P. D.) 271–278 (Geological Society of America, 1990).

  62. Parkos, D., Pikus, A., Alexeenko, A. & Melosh, H. Jay HCN production via impact ejecta reentry during the late heavy bombardment. J. Geophys. Res. Planets 123, 892–909 (2018).

    Article  Google Scholar 

  63. Holland, H. D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

    Article  Google Scholar 

  64. Catling, D. C., Zahnle, K. J. & McKay, C. P. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001).

    Article  Google Scholar 

  65. Byerly, G. R., Lowe, D. R., Wooden, J. L. & Xie, X. An Archean impact layer from the Pilbara and Kaapvaal cratons. Science 297, 1325–1327 (2002).

    Article  Google Scholar 

  66. Drabon, N., Lowe, D. R. & Byerly, G. R. Detrital zircon geochronology of sedimentary rocks of the Paleoarchean Barberton Greenstone Belt, South Africa: no evidence for continental crust. Geology 45, 803–806 (2017).

    Article  Google Scholar 

  67. Kröner, A., Byerly, G. R. & Lowe, D. R. Chronology of early Archaean granite-greenstone evolution in the Barberton Mountain Land, South Africa, based on precise dating by single zircon evaporation. Earth Planet. Sci. Lett. 103, 41–54 (1991).

    Article  Google Scholar 

  68. Byerly, G. R., Kröner, A., Lowe, D. R., Todt, W. & Walsh, M. M. Prolonged magmatism and time constraints for sediment deposition in the early Archean Barberton greenstone belt: evidence from the Upper Onverwacht and Fig Tree groups. Precambrian Res. 78, 125–138 (1996).

    Article  Google Scholar 

  69. Fritz, J. et al. Nondestructive spectroscopic and petrochemical investigations of Paleoarchean spherule layers from the ICDP drill core BARB5, Barberton Mountain Land, South Africa. Meteorit. Planet. Sci. 51, 2441–2458 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge insightful discussions with D. Lowe, B. Black, B. Johnson and R. Fu. T.S. was funded by the German Research Foundation (DFG, SCHU 3061/1-1).

Author information

Authors and Affiliations

Authors

Contributions

S.M. conceived the work and performed Monte Carlo impact flux calculations and derived impactor sizes from spherule-layer data. N.D., T.S. and C.K. provided spherule-layers data and helped with their interpretation. L.S. performed oxygen calculations. D.N. and W.F.B. helped with the terrestrial impact flux. T.L. helped with the geochemical record of atmospheric oxygenation. All authors contributed to the interpretation of the results and to the writing of the manuscript.

Corresponding author

Correspondence to S. Marchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Roxana Lupu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Impactor size-frequency distributions.

Gray curve is the MBA SFD from ref. 40. This SFD was able to generate a NEO SFD in agreement with observations at that time. The orange curve is an update of the MBA SFD—our nominal MBA SFD—that better fit the current NEO SFD (green). The vertical dashed lines indicate reference sizes of 33 m and 5 km (see text for details). For completeness, 1.1 km is also indicated, corresponding to an impactor size that would make a 20 km lunar crater (often used for calibrating bombardment models), for an impactor density of 2.5 g/cm3, 18 km/s impact velocity, 45 deg impact angle (see Methods).

Extended Data Fig. 2 Testing collisional models.

a) Model impactor SFDs (red curves as in Fig. 2b) compared with Monte Carlo retrieval of impactor SFDs from spherule layers for the minimum number of independent layers (Extended Data Table 1). Meaning of symbols and colors as in Fig. 2b. b) Best-fit collisional model. The figure shows the model impactor SFDs (blue curves) for γbest = 10γmax. The green and yellow lines are the impactor SFDs reconstructed from spherule layers (see Fig. 2b), but now impactors sizes are reduced by a factor fbest = 1.5 (see text). The red shaded area indicates the range of impactor SFDs for γmax, as in Fig. 2b.

Extended Data Fig. 3 Atmospheric O2 abundance after impact.

The calculations assume chemical equilibrium between the total impactor vapor mass and background atmosphere. Here we take a background atmosphere of 0.7 bars N2, 0.3 bars CO2, and 1 ppm O2. The initial impact conditions are taken as 100 bars and 2000 K and used to derive the composition of the impactor vapor in equilibrium with the impacting meteoritic material. We then vary the mass of impactor vapor to atmospheric mass for different impactor diameters. Atmospheric O2 abundances are strongly depleted by 1000 K, indicating that quenching of chemical reactions within the vapor plume should not strongly affect the amount of O2 consumed by the impact.

Extended Data Table 1 Archean impact spherule layers

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marchi, S., Drabon, N., Schulz, T. et al. Delayed and variable late Archaean atmospheric oxidation due to high collision rates on Earth. Nat. Geosci. 14, 827–831 (2021). https://doi.org/10.1038/s41561-021-00835-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00835-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing