Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

End-Permian marine extinction due to temperature-driven nutrient recycling and euxinia

Abstract

Extreme warming at the end-Permian induced profound changes in marine biogeochemical cycling and animal habitability, leading to the largest metazoan extinction in Earth’s history. However, a causal mechanism for the extinction that is consistent with various proxy records of geochemical conditions through the interval has yet to be determined. Here we combine an Earth system model with global and local redox interpretations from the Permian/Triassic in an attempt to identify this causal mechanism. Our results show that a temperature-driven increase in microbial respiration can reconcile reconstructions of the spatial distribution of euxinia and seafloor anoxia spanning the Permian–Triassic transition. We illustrate how enhanced metabolic rates would have strengthened upper-ocean nutrient (phosphate) recycling, and thus shoaled and intensified the oxygen minimum zones, eventually causing euxinic waters to expand onto continental shelves and poison benthic habitats. Taken together, our findings demonstrate the sensitive interconnections between temperature, microbial metabolism, ocean redox state and carbon cycling during the end-Permian mass extinction. As enhanced microbial activity in the ocean interior also lowers subsurface dissolved inorganic carbon isotopic values, the carbon release as inferred from isotope changes in shallow subsurface carbonates is likely overestimated, not only for this event, but perhaps for many other carbon cycle and climate perturbations through Earth’s history.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Temporal relationship of changes in isotope records and uranium (U) mass balance modelling for the P/Tr extinction.
Fig. 2: Global sensitivity of POM cycling and ocean redox to temperature and phosphate changes for the static and dynamic representation of the biological pump.
Fig. 3: Ocean redox conditions during the P/Tr transition using the dynamic cGENIE model.

Data availability

The locations of all data used in this study are provided in the Supplementary Information.

Code availability

The version of the code used in this paper is tagged as release v0.9.15 and has a DOI of https://doi.org/10.5281/zenodo.4008865. Necessary boundary condition files are included as part of the code release. Configuration files for the specific experiments presented in the paper can be found in the installation subdirectory: genie-userconfigs/MS/huelseetal.2020. Details of the experiments, plus the command line needed to run each one, are given in the readme.txt file in that directory. A manual describing code installation, basic model configuration and an extensive series of tutorials is provided. The LaTeX source of the manual and pre-built PDF file can be obtained by cloning (https://github.com/derpycode/muffindoc).

References

  1. Erwin, D. H. The Permo-Triassic extinction. Nature 367, 231–236 (1994).

    Article  Google Scholar 

  2. Renne, P. R., Black, M. T., Zichao, Z., Richards, M. A. & Basu, A. R. Synchrony and causal relations between Permian–Triassic boundary crises and Siberian flood volcanism. Science 269, 1413–1416 (1995).

    Article  Google Scholar 

  3. Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in Earth history. Proc. Natl Acad. Sci. USA 113, E6325–E6334 (2016).

    Article  Google Scholar 

  4. Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 1–6 (2017).

    Article  Google Scholar 

  5. Burgess, S. D., Bowring, S. & Shen, S.-z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).

    Article  Google Scholar 

  6. Sun, Y. et al. Lethally hot temperatures during the early triassic greenhouse. Science 338, 366–370 (2012).

    Article  Google Scholar 

  7. Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).

    Article  Google Scholar 

  8. Joachimski, M. M., Alekseev, A. S., Grigoryan, A. & Gatovsky, Y. A. Siberian trap volcanism, global warming and the Permian–Triassic mass extinction: new insights from Armenian Permian–Triassic sections. GSA Bull. 132, 427–443 (2020).

    Article  Google Scholar 

  9. Grice, K. et al. Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307, 706–709 (2005).

    Article  Google Scholar 

  10. Brennecka, G. A., Herrmann, A. D., Algeo, T. J. & Anbar, A. D. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 108, 17631–17634 (2011).

    Article  Google Scholar 

  11. Lau, K. V. et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proc. Natl Acad. Sci. USA 113, 2360–2365 (2016).

    Article  Google Scholar 

  12. Korte, C. & Kozur, H. W. Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review. J. Asian Earth Sci. 39, 215–235 (2010).

    Article  Google Scholar 

  13. Erwin, D. H. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago, Updated Edition, vol. 37 (Princeton Univ. Press, 2015).

  14. Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).

    Article  Google Scholar 

  15. Winguth, A. M. E. & Maier-Reimer, E. Causes of the marine productivity and oxygen changes associated with the Permian–Triassic boundary: a reevaluation with ocean general circulation models. Mar. Geol. 217, 283–304 (2005).

    Article  Google Scholar 

  16. Winguth, C. & Winguth, A. M. E. Simulating Permian–Triassic oceanic anoxia distribution: implications for species extinction and recovery. Geology 40, 127–130 (2012).

    Article  Google Scholar 

  17. Meyer, K. M., Kump, L. R. & Ridgwell, A. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36, 747–750 (2008).

    Article  Google Scholar 

  18. Meyer, K. M., Ridgwell, A. & Payne, J. L. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems. Geobiology 14, 207–219 (2016).

    Article  Google Scholar 

  19. Zhang, F. et al. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Sci. Adv. 4, e1602921 (2018).

    Article  Google Scholar 

  20. Rothman, D. H. et al. Methanogenic burst in the end-Permian carbon cycle. Proc. Natl Acad. Sci. USA 111, 5462–5467 (2014).

    Article  Google Scholar 

  21. Cui, Y., Kump, L. R. & Ridgwell, A. Initial assessment of the carbon emission rate and climatic consequences during the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 389, 128–136 (2013).

    Article  Google Scholar 

  22. Clarkson, M. O. et al. Ocean acidification and the Permo–Triassic mass extinction. Science 348, 229–232 (2015).

    Article  Google Scholar 

  23. Meyer, K. M., Yu, M., Jost, A. B., Kelley, B. M. & Payne, J. L. δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth Planet. Sci. Lett. 302, 378–384 (2011).

    Article  Google Scholar 

  24. Song, H. et al. Large vertical δ13CDIC gradients in Early Triassic seas of the South China Craton: implications for oceanographic changes related to Siberian traps volcanism. Global Planet. Change 105, 7–20 (2013).

    Article  Google Scholar 

  25. Luo, G. et al. Vertical 13Corg gradients record changes in planktonic microbial community composition during the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 119–131 (2014).

    Article  Google Scholar 

  26. Algeo, T. J. et al. Changes in productivity and redox conditions in the Panthalassic Ocean during the latest Permian. Geology 38, 187–190 (2010).

    Article  Google Scholar 

  27. Schobben, M. et al. Flourishing ocean drives the end-Permian marine mass extinction. Proc. Natl Acad. Sci. USA 112, 10298–10303 (2015).

    Article  Google Scholar 

  28. Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).

    Article  Google Scholar 

  29. Kump, L. R., Pavlov, A. & Arthur, M. A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33, 397–400 (2005).

    Article  Google Scholar 

  30. Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).

    Article  Google Scholar 

  31. Lu, W. et al. Late inception of a resiliently oxygenated upper ocean. Science 361, 174–177 (2018).

    Google Scholar 

  32. López-Urrutia, A., Martin, E. S., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl Acad. Sci. USA 103, 8739–8744 (2006).

    Article  Google Scholar 

  33. Ridgwell, A. et al. Marine geochemical data assimilation in an efficient Earth system model of global biogeochemical cycling. Biogeosciences 4, 87–104 (2007).

    Article  Google Scholar 

  34. Hülse, D., Arndt, S., Daines, S., Regnier, P. & Ridgwell, A. OMEN-SED 1.0: a novel, numerically efficient organic matter sediment diagenesis module for coupling to Earth system models. Geosci. Model Dev. 11, 2649–2689 (2018).

    Article  Google Scholar 

  35. Hülse, D., Arndt, S., Wilson, J. D., Munhoven, G. & Ridgwell, A. Understanding the causes and consequences of past marine carbon cycling variability through models. Earth Sci. Rev. 171, 349–382 (2017).

    Article  Google Scholar 

  36. Heim, N. A., Knope, M. L., Schaal, E. K., Wang, S. C. & Payne, J. L. Cope’s rule in the evolution of marine animals. Science 347, 867–870 (2015).

    Article  Google Scholar 

  37. Sinninghe Damsté, J. S., Kok, M. D., Köster, J. & Schouten, S. Sulfurized carbohydrates: an important sedimentary sink for organic carbon? Earth Planet. Sci. Lett. 164, 7–13 (1998).

    Article  Google Scholar 

  38. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).

    Article  Google Scholar 

  39. Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677–692 (1994).

    Article  Google Scholar 

  40. Schobben, M. et al. A nutrient control on marine anoxia during the end-Permian mass extinction. Nat. Geosci. 13, 640–646 (2020).

    Article  Google Scholar 

  41. Hülse, D., Arndt, S. & Ridgwell, A. Mitigation of extreme ocean anoxic event conditions by organic matter sulfurization. Paleoceanogr. Paleoclimatol.34, 476–489 (2019).

    Article  Google Scholar 

  42. Li, X. et al. Particulate sulfur species in the water column of the Cariaco Basin. Geochim. Cosmochim. Acta 75, 148–163 (2011).

    Article  Google Scholar 

  43. Helly, J. J. & Levin, L. A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res I 51, 1159–1168 (2004).

    Article  Google Scholar 

  44. Montenegro, A. et al. Climate simulations of the Permian–Triassic boundary: ocean acidification and the extinction event. Paleoceanography 26, PA3207 (2011).

    Article  Google Scholar 

  45. Naafs, B. D. A. et al. Fundamentally different global marine nitrogen cycling in response to severe ocean deoxygenation. Proc. Natl Acad. Sci. USA 116, 24979–24984 (2019).

    Article  Google Scholar 

  46. Berner, R. A. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim. Cosmochim. Acta 69, 3211–3217 (2005).

    Article  Google Scholar 

  47. Payne, J. L. & Kump, L. R. Evidence for recurrent early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet. Sci. Lett. 256, 264–277 (2007).

    Article  Google Scholar 

  48. Ridgwell, A. A mid mesozoic revolution in the regulation of ocean chemistry. Mar. Geol. 217, 339–357 (2005).

    Article  Google Scholar 

  49. Zhang, F. et al. Global-ocean redox variations across the Smithian–Spathian boundary linked to concurrent climatic and biotic changes. Earth Sci. Rev. 195, 147–168 (2019).

    Article  Google Scholar 

  50. Elrick, M. et al. Global-ocean redox variation during the middle–late Permian through early Triassic based on uranium isotope and Th/U trends of marine carbonates. Geology 45, 163–166 (2017).

    Article  Google Scholar 

  51. Zhang, F. et al. Congruent Permian–Triassic δ238U records at Panthalassic and Tethyan sites: confirmation of global-oceanic anoxia and validation of the U-isotope paleoredox proxy. Geology 46, 327–330 (2018).

    Article  Google Scholar 

  52. Schobben, M., Joachimski, M. M., Korn, D., Leda, L. & Korte, C. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res. 26, 675–683 (2014).

    Article  Google Scholar 

  53. Winguth, A. M. E., Shields, C. A. & Winguth, C. Transition into a hothouse world at the Permian–Triassic boundary a model study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 316–327 (2015).

    Article  Google Scholar 

  54. John, E. H., Wilson, J. D., Pearson, P. N. & Ridgwell, A. Temperature-dependent remineralization and carbon cycling in the warm eocene oceans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 413, 158–166 (2014).

    Article  Google Scholar 

  55. Crichton, K. A., Wilson, J. D., Ridgwell, A. & Pearson, P. N. Calibration of key temperature-dependent ocean microbial processes in the cGENIE.muffin Earth system model. Geoscientific Model Development Discussions 1–26 (Copernicus, 2020).

  56. Butterfield, N. J. Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7, 1–7 (2009).

    Article  Google Scholar 

  57. Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).

    Article  Google Scholar 

  58. Smayda, T. J. The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Biol. Annu. Rev. 8, 353–414 (1970).

    Google Scholar 

  59. Morford, J. L. & Emerson, S. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 63, 1735–1750 (1999).

    Article  Google Scholar 

  60. Chen, X. et al. Diagenetic effects on uranium isotope fractionation in carbonate sediments from the Bahamas. Geochim. Cosmochim. Acta 237, 294–311 (2018).

    Article  Google Scholar 

  61. Tissot, F. L. H. et al. Controls of eustasy and diagenesis on the 238U/235U of carbonates and evolution of the seawater (234U/238U) during the last 1.4 Myr. Geochim. Cosmochim. Acta 242, 233–265 (2018).

    Article  Google Scholar 

  62. Mundil, R., Ludwig, K. R., Metcalfe, I. & Renne, P. R. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305, 1760–1763 (2004).

    Article  Google Scholar 

  63. Galfetti, T. et al. Timing of the early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth Planet. Sci. Lett. 258, 593–604 (2007).

    Article  Google Scholar 

  64. Summons, R. E. & Powell, T. G. Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria. Geochim. Cosmochim. Acta 51, 557–566 (1987).

    Article  Google Scholar 

  65. Wignall, P. B. & Newton, R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. Am. J. Sci. 298, 537–552 (1998).

    Article  Google Scholar 

  66. Jin, Y. G. et al. Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science 289, 432–436 (2000).

    Article  Google Scholar 

  67. Shen, S.-z et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372 (2011).

    Article  Google Scholar 

  68. Isozaki, Y. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276, 235–238 (1997).

    Article  Google Scholar 

  69. Hays, L. E., Beatty, T., Henderson, C. M., Love, G. D. & Summons, R. E. Evidence for photic zone euxinia through the end-Permian mass extinction in the Panthalassic Ocean (Peace River Basin, Western Canada). Palaeoworld 16, 39–50 (2007).

    Article  Google Scholar 

  70. Wignall, P. B. & Newton, R. Contrasting deep-water records from the upper Permian and lower Triassic of South Tibet and British Columbia: evidence for a diachronous mass extinction. PALAIOS 18, 153–167 (2003).

    Article  Google Scholar 

  71. Nielsen, J. K. & Shen, Y. Evidence for sulfidic deep water during the late Permian in the East Greenland Basin. Geology 32, 1037–1040 (2004).

    Article  Google Scholar 

  72. Pancost, R. D., Crawford, N. & Maxwell, J. R. Molecular evidence for basin-scale photic zone euxinia in the Permian Zechstein Sea. Chem. Geol. 188, 217–227 (2002).

    Article  Google Scholar 

  73. Wignall, P. B., Newton, R. & Brookfield, M. E. Pyrite framboid evidence for oxygen-poor deposition during the Permian–Triassic crisis in Kashmir. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216, 183–188 (2005).

    Article  Google Scholar 

  74. Algeo, T. J. et al. Sequencing events across the Permian–Triassic boundary, Guryul Ravine (Kashmir, India). Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 328–346 (2007).

    Article  Google Scholar 

  75. Algeo, T. J. et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 65–83 (2011).

    Article  Google Scholar 

  76. Takahashi, S. et al. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth Planet. Sci. Lett. 393, 94–104 (2014).

    Article  Google Scholar 

  77. Riccardi, A. L., Arthur, M. A. & Kump, L. R. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochim. Cosmochim. Acta 70, 5740–5752 (2006).

    Article  Google Scholar 

  78. Riccardi, A., Kump, L. R., Arthur, M. A. & D’Hondt, S. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeogr. Palaeoclimatol. Palaeoecol. 248, 73–81 (2007).

    Article  Google Scholar 

  79. Cao, C. et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet. Sci. Lett. 281, 188–201 (2009).

    Article  Google Scholar 

  80. Wignall, P. B., Hallam, A., Xulong, L. & Fengqing, Y. Palaeoenvironmental changes across the Permian/Triassic boundary at Shangsi (N. Sichuan, China). Hist. Biol. 10, 175–189 (1995).

    Article  Google Scholar 

  81. Wignall, P. B. & Hallam, A. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr. Palaeoclimatol. Palaeoecol. 93, 21–46 (1992).

    Article  Google Scholar 

  82. Wignall, P. B. & Twitchett, R. J. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155–1158 (1996).

    Article  Google Scholar 

  83. Dolenec, T., Lojen, S. & Ramov, A. The Permian–Triassic boundary in Western Slovenia (Idrijca Valley section): magnetostratigraphy, stable isotopes, and elemental variations. Chem. Geol. 175, 175–190 (2001).

    Article  Google Scholar 

  84. Newton, R. J., Pevitt, E. L., Wignall, P. B. & Bottrell, S. H. Large shifts in the isotopic composition of seawater sulphate across the Permo–Triassic boundary in northern Italy. Earth Planet. Sci. Lett. 218, 331–345 (2004).

    Article  Google Scholar 

  85. Schwab, V. & Spangenberg, J. E. Organic geochemistry across the Permian–Triassic transition at the Idrijca Valley, Western Slovenia. Appl. Geochem. 19, 55–72 (2004).

    Article  Google Scholar 

  86. Fio, K. et al. Stable isotope and trace element stratigraphy across the Permian–Triassic transition: a redefinition of the boundary in the Velebit Mountain, Croatia. Chem. Geol. 278, 38–57 (2010).

    Article  Google Scholar 

  87. Algeo, T. et al. Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. GSA Bull. 124, 1424–1448 (2012).

    Article  Google Scholar 

  88. Grasby, S. E., Beauchamp, B., Embry, A. & Sanei, H. Recurrent Early Triassic ocean anoxia. Geology 41, 175–178 (2013).

    Article  Google Scholar 

  89. Grasby, S. E., Beauchamp, B. & Knies, J. Early Triassic productivity crises delayed recovery from world’s worst mass extinction. Geology 44, 779–782 (2016).

    Article  Google Scholar 

  90. Loope, G. R., Kump, L. R. & Arthur, M. A. Shallow water redox conditions from the Permian–Triassic boundary microbialite: the rare earth element and iodine geochemistry of carbonates from Turkey and South China. Chem. Geol. 351, 195–208 (2013).

    Article  Google Scholar 

  91. Algeo, T. J., Ellwood, B., Nguyen, T. K. T., Rowe, H. & Maynard, J. B. The Permian–Triassic boundary at Nhi Tao, Vietnam: evidence for recurrent influx of sulfidic watermasses to a shallow-marine carbonate platform. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 304–327 (2007).

    Article  Google Scholar 

  92. Algeo, T. et al. Association of 34S-depleted pyrite layers with negative carbonate δ13C excursions at the Permian–Triassic boundary: evidence for upwelling of sulfidic deep-ocean water masses. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001823 (2008).

  93. Woods, A. D., Bottjer, D. J., Mutti, M. & Morrison, J. Lower Triassic large sea-floor carbonate cements: their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology 27, 645–648 (1999).

    Article  Google Scholar 

  94. Sperling, E. A. & Ingle, J. C. A Permian–Triassic boundary section at Quinn River Crossing, northwestern Nevada, and implications for the cause of the early Triassic chert gap on the western Pangean margin. GSA Bull. 118, 733–746 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

D.H. is supported by a postdoctoral fellowship from the Simons Foundation (award 653829) and a Heising-Simons Foundation grant (no. 2015-145). K.V.L. acknowledges a Agouron Geobiology Fellowship and S.J.v.d.V. a NASA Postdoctoral Program fellowship. A.R. acknowledges support from the Heising-Simons Foundation (grant no. 2015-145) as well as NSF grant EAR-2121165.

Author information

Authors and Affiliations

Authors

Contributions

D.H., K.V.L. and A.R. conceived the study. D.H. and A.R. designed and conducted cGENIE experiments. K.V.L. adapted the U model and conducted the experiments. K.V.L. and D.H. compiled and analysed the proxy data. All authors analysed model output and contributed to writing the paper.

Corresponding author

Correspondence to Dominik Hülse.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Karin Kvale, Martin Schobben and Yadong Sun for their contribution to the peer review of this work. Primary handling editor(s): James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sensitivity of uranium forward model to changes in seafloor anoxia (fanox).

Sensitivity of uranium forward model to changes in seafloor anoxia (fanox). The model is run as described in Fig. 1, with varying of fanox assumed for the first perturbation surrounding the P/Tr. Compilation of δ238U data (colored symbols as in Fig. 1) includes stratigraphic sections from Dajiang, Zuodeng, Guandao and Daxiakou in south China located along the eastern margin of the Tethys11,49,50 (circles represent shallow and triangles deeper sites); Zal in Iran and Taşkent in Turkey from the western margin of the Tethys11,19 (squares); Jesmond in British Columbia, Canada located at the eastern margin of the Panthalassa Ocean49 (orange diamonds); and Kamura in Japan from a shallow atoll in the mid-Panthalassa Ocean51 (red diamonds).

Extended Data Fig. 2 cGENIE Permian/Triassic bathymetry and paleogeographic locations of redox observations.

cGENIE Permian/Triassic bathymetry and paleogeographic locations of redox observations as reported in Extended Data Table 1. SC-S: South China (Shangsi); SC-M: South China (Meishan).

Extended Data Fig. 3 Ocean redox conditions during the P/Tr transition using the ‘static’ cGENIE model.

Ocean redox conditions during the P/Tr transition using the ‘static’ cGENIE model. Top: Simulated maximum H2S concentration between 81 and 928m. Middle: Depth where the maximum in [H2S] is observed. Bottom: Simulated extent of seafloor anoxia. Model results for [H2S] and [O2] are superimposed by observations: Evidence for euxinia/anoxia is represented by circles; evidence against by crosses; ambiguous evidence or dynamic redox-conditions are indicated by triangles (see Extended Data Table 1).

Extended Data Fig. 4 Water column profiles for carbon isotope signature of dissolved inorganic carbon (DIC) using the dynamic biological pump.

Water column profiles for carbon isotope signature of dissolved inorganic carbon (DIC) using the dynamic biological pump. Profiles for the experiments restoring atmospheric pCO2 and δ13C to prescribed values (a); and experiments allowing for variable atmospheric pCO2 and δ13C while adjusting radiative forcing (b). Note that the profiles are the unadjusted model results, that is not corrected for the weighted mean of the C-pools nor shifted to align with the ‘Permian background’ value. Shown are profiles for the warmer, eastern equatorial Tethys Ocean (red dashed box in Supplementary Fig. 1).

Extended Data Table 1 Permian/Triassic redox observations.

Observations for water-column redox conditions for Late Permian background (Phase 1), Pre-Extinction Horizon (Phase 2) and Main Extinction Phase (Phase 3). Ambiguous evidence or dynamic redox-conditions are indicated by ‘Yes?’.

Supplementary information

Supplementary information

Supplementary Figs. 1–8, Tables 1–3, Methods and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hülse, D., Lau, K.V., van de Velde, S.J. et al. End-Permian marine extinction due to temperature-driven nutrient recycling and euxinia. Nat. Geosci. 14, 862–867 (2021). https://doi.org/10.1038/s41561-021-00829-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00829-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing