Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A record of plume-induced plate rotation triggering subduction initiation

Abstract

The formation of a global network of plate boundaries surrounding a mosaic of lithospheric fragments was a key step in the emergence of Earth’s plate tectonics. So far, propositions for plate boundary formation are regional in nature; how plate boundaries are created over thousands of kilometres in geologically short periods remains elusive. Here we show from geological observations that a >12,000-km-long plate boundary formed between the Indian and African plates around 105 Myr ago. This boundary comprised subduction segments from the eastern Mediterranean region to a newly established India–Africa rotation pole in the west Indian Ocean, where it transitioned into a ridge between India and Madagascar. We identify coeval mantle plume rise below Madagascar–India as the only viable trigger of this plate rotation. For this, we provide a proof of concept by torque balance modelling, which reveals that the Indian and African cratonic keels were important in determining plate rotation and subduction initiation in response to the spreading plume head. Our results show that plumes may provide a non-plate-tectonic mechanism for large-plate rotation, initiating divergent and convergent plate boundaries far away from the plume head. We suggest that this mechanism may be an underlying cause of the emergence of modern plate tectonics.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

  • A dynamic planet

    Communications Earth & Environment Open Access 02 September 2021

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Plate kinematic reconstructions of the Neotethys Ocean and surrounding continents.
Fig. 2: Torque balance modelling results of plumes affecting plates similar to India and Africa with and without cratonic keels.

Data availability

GPlates files with reconstructions used to draft Fig. 1 are provided at https://figshare.com/articles/dataset/van_Hinsbergen_NatureGeo_2021_GPlates_zip/13516727.

Code availability

All codes used in the geodynamic modelling in this study are available at https://figshare.com/articles/software/van_Hinsbergen_etal_NatureGeo_2021_geodynamics_package/13635089.

References

  1. Lenardic, A. The diversity of tectonic modes and thoughts about transitions between them. Phil. Trans. A 376, 20170416 (2018).

    Article  Google Scholar 

  2. Stern, R. J. Subduction initiation: spontaneous and induced. Earth Planet. Sci. Lett. 226, 275–292 (2004).

    Article  Google Scholar 

  3. Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L. & Müller, R. D. Catastrophic initiation of subduction following forced convergence across fracture zones. Earth Planet. Sci. Lett. 212, 15–30 (2003).

    Article  Google Scholar 

  4. Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V. & Whattam, S. A. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015).

    Article  Google Scholar 

  5. Pusok, A. E. & Stegman, D. R. The convergence history of India–Eurasia records multiple subduction dynamics processes. Sci. Adv. 6, eaaz8681 (2020).

    Article  Google Scholar 

  6. Baes, M., Sobolev, S., Gerya, T. & Brune, S. Plume-induced subduction initiation: single-slab or multi-slab subduction? Geochem. Geophys. Geosyst. 21, e2019GC008663 (2020).

    Google Scholar 

  7. Gurnis, M., Hall, C. & Lavier, L. Evolving force balance during incipient subduction. Geochem. Geophys. Geosyst. 5, Q07001 (2004)

  8. Guilmette, C. et al. Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman. Nat. Geosci. 11, 688–695 (2018).

    Article  Google Scholar 

  9. Stern, R. J. & Gerya, T. Subduction initiation in nature and models: a review. Tectonophysics https://doi.org/10.1016/j.tecto.2017.10.014 (2017).

    Article  Google Scholar 

  10. Agard, P. et al. Plate interface rheological switches during subduction infancy: control on slab penetration and metamorphic sole formation. Earth Planet. Sci. Lett. 451, 208–220 (2016).

    Article  Google Scholar 

  11. van Hinsbergen, D. J. J. et al. Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions. Geochem. Geophys. Geosyst. 16, 1771–1785 (2015).

    Article  Google Scholar 

  12. Dilek, Y. & Furnes, H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 123, 387–411 (2011).

    Article  Google Scholar 

  13. Gaina, C., van Hinsbergen, D. J. J. & Spakman, W. Tectonic interactions between India and Arabia since the Jurassic reconstructed from marine geophysics, ophiolite geology, and seismic tomography. Tectonics 34, 875–906 (2015).

    Article  Google Scholar 

  14. Pourteau, A. et al. Thermal evolution of an ancient subduction interface revealed by Lu–Hf garnet geochronology, Halilbağı Complex (Anatolia). Geosci. Front. 10, 127–148 (2019).

    Article  Google Scholar 

  15. Rioux, M. et al. Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: new constraints on the tectonic evolution during ophiolite formation from high-precision U–Pb zircon geochronology. Earth Planet. Sci. Lett. 451, 185–195 (2016).

    Article  Google Scholar 

  16. Robinson, J., Beck, R., Gnos, E. & Vincent, R. K. New structural and stratigraphic insights for northwestern Pakistan from field and Landsat Thematic Mapper data. Geol. Soc. Am. Bull. 112, 364–374 (2000).

    Article  Google Scholar 

  17. Parlak, O. The tauride ophiolites of Anatolia (Turkey): a review. J. Earth Sci. 27, 901–934 (2016).

    Article  Google Scholar 

  18. van Hinsbergen, D. J. J. et al. Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics 35, 983–1014 (2016).

    Article  Google Scholar 

  19. Maffione, M., van Hinsbergen, D. J. J., de Gelder, G. I. N. O., van der Goes, F. C. & Morris, A. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria. J. Geophys. Res. Solid Earth 122, 3953–3976 (2017).

    Article  Google Scholar 

  20. van Hinsbergen, D. J., Maffione, M., Koornneef, L. M. & Guilmette, C. Kinematic and paleomagnetic restoration of the Semail ophiolite (Oman) reveals subduction initiation along an ancient Neotethyan fracture zone. Earth Planet. Sci. Lett. 518, 183–196 (2019).

    Article  Google Scholar 

  21. Torsvik, T. H. & Cocks, L. R. M. Earth History and Palaeogeography (Cambridge Univ. Press, 2017).

  22. Wan, B. et al. Cyclical one-way continental rupture-drift in the Tethyan evolution: subduction-driven plate tectonics. Sci. China Earth Sci. 62, 2005–2016 (2019).

  23. van Hinsbergen, D. J. J. et al. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 81, 79–229 (2020).

    Article  Google Scholar 

  24. Warren, C. J., Parrish, R. R., Waters, D. J. & Searle, M. P. Dating the geologic history of Oman’s Semail ophiolite: insights from U–Pb geochronology. Contrib. Mineral. Petrol. 150, 403–422 (2005).

    Article  Google Scholar 

  25. Güngör, T. et al. Kinematics and U–Pb zircon ages of the sole metamorphics of the Marmaris Ophiolite, Lycian Nappes, Southwest Turkey. Int. Geol. Rev. 61, 1124–1142 (2019).

    Article  Google Scholar 

  26. van der Meer, D. G., van Hinsbergen, D. J. J. & Spakman, W. Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723, 309–448 (2018).

    Article  Google Scholar 

  27. Buiter, S. J. & Torsvik, T. H. A review of Wilson Cycle plate margins: a role for mantle plumes in continental break-up along sutures? Gondwana Res. 26, 627–653 (2014).

    Article  Google Scholar 

  28. Gibbons, A. D., Whittaker, J. M. & Müller, R. D. The breakup of East Gondwana: assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model. J. Geophys. Res. Solid Earth 118, 808–822 (2013).

    Article  Google Scholar 

  29. Gaina, C., Müller, R. D., Brown, B., Ishihara, T. & Ivanov, S. Breakup and early seafloor spreading between India and Antarctica. Geophys. J. Int. 170, 151–169 (2007).

    Article  Google Scholar 

  30. Gaina, C. et al. The African Plate: a history of oceanic crust accretion and subduction since the Jurassic. Tectonophysics 604, 4–25 (2013).

    Article  Google Scholar 

  31. Agard, P., Jolivet, L., Vrielynck, B., Burov, E. & Monié, P. Plate acceleration: the obduction trigger? Earth Planet. Sci. Lett. 258, 428–441 (2007).

    Article  Google Scholar 

  32. Jolivet, L. et al. Neo-Tethys geodynamics and mantle convection: from extension to compression in Africa and a conceptual model for obduction. Can. J. Earth Sci. 53, 1190–1204 (2015).

    Article  Google Scholar 

  33. Stampfli, G. M. & Borel, G. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 196, 17–33 (2002).

    Article  Google Scholar 

  34. van Hinsbergen, D. J. J. et al. Reconstructing Greater India: paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics 760, 69–94 (2019).

    Article  Google Scholar 

  35. Kapp, P. & DeCelles, P. G. Mesozoic–Cenozoic geological evolution of the Himalayan–Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 319, 159–254 (2019).

    Article  Google Scholar 

  36. Advokaat, E. L. et al. Early Cretaceous origin of the Woyla Arc (Sumatra, Indonesia) on the Australian plate. Earth Planet. Sci. Lett. 498, 348–361 (2018).

    Article  Google Scholar 

  37. Plunder, A. et al. History of subduction polarity reversal during arc‐continent collision: constraints from the Andaman Ophiolite and its metamorphic sole. Tectonics 39, e2019TC005762 (2020).

    Article  Google Scholar 

  38. Torsvik, T. et al. Late Cretaceous magmatism in Madagascar: palaeomagnetic evidence for a stationary Marion hotspot. Earth Planet. Sci. Lett. 164, 221–232 (1998).

    Article  Google Scholar 

  39. Mohan, M. R. et al. The Ezhimala igneous complex, southern India: possible imprint of late Cretaceous magmatism within rift setting associated with India–Madagascar separation. J. Asian Earth Sci. 121, 56–71 (2016).

    Article  Google Scholar 

  40. Cande, S. C. & Stegman, D. R. Indian and African plate motions driven by the push force of the Reunion plume head. Nature 475, 47–52 (2011).

    Article  Google Scholar 

  41. van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V. & Gassmöller, R. Acceleration and deceleration of India–Asia convergence since the Cretaceous: roles of mantle plumes and continental collision. J. Geophys. Res. https://doi.org/10.1029/2010jb008051 (2011).

  42. Wang, Y. & Li, M. The interaction between mantle plumes and lithosphere and its surface expressions: 3-D numerical modelling. Geophys. J. Int. https://doi.org/10.1093/gji/ggab014 (2021).

  43. Kumar, P. et al. The rapid drift of the Indian tectonic plate. Nature 449, 894–897 (2007).

    Article  Google Scholar 

  44. Lamb, S. & Davis, P. Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425, 792–797 (2003).

    Article  Google Scholar 

  45. van der Meer, D. G., Spakman, W., van Hinsbergen, D. J. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nat. Geosci. 3, 36–40 (2010).

    Article  Google Scholar 

  46. Tavani, S., Corradetti, A., Sabbatino, M., Seers, T. & Mazzoli, S. Geological record of the transition from induced to self-sustained subduction in the Oman Mountains. J. Geodyn. 133, 101674 (2020).

    Article  Google Scholar 

  47. Tackley, P. J. Mantle convection and plate tectonics: toward an integrated physical and chemical theory. Science 288, 2002–2007 (2000).

    Article  Google Scholar 

  48. Coltice, N., Husson, L., Faccenna, C. & Arnould, M. What drives tectonic plates? Sci. Adv. 5, eaax4295 (2019).

    Article  Google Scholar 

  49. Dilek, Y. Ophiolite pulses, mantle plumes and orogeny. Geol. Soc. Lond. Spec. Publ. 218, 9–19 (2003).

    Article  Google Scholar 

  50. Ernst, R., Grosfils, E. & Mege, D. Giant dike swarms: Earth, Venus, and Mars. Annu. Rev. Earth Planet. Sci. 29, 489–534 (2001).

    Article  Google Scholar 

  51. Müller, R. D. et al. GPlates: building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261 (2018).

    Article  Google Scholar 

  52. Clube, T. M. M., Creer, K. M. & Robertson, A. H. F. Palaeorotation of the Troodos microplate, Cyprus. Nature 317, 522 (1985).

    Article  Google Scholar 

  53. Morris, A., Meyer, M., Anderson, M. W. & MacLeod, C. J. Clockwise rotation of the entire Oman ophiolite occurred in a suprasubduction zone setting. Geology 44, 1055–1058 (2016).

    Article  Google Scholar 

  54. McQuarrie, N. & van Hinsbergen, D. J. J. Retrodeforming the Arabia–Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41, 315–318 (2013).

    Article  Google Scholar 

  55. Monsef, I. et al. Evidence for an early-MORB to fore-arc evolution within the Zagros suture zone: constraints from zircon U–Pb geochronology and geochemistry of the Neyriz ophiolite (South Iran). Gondwana Res. 62, 287–305 (2018).

    Article  Google Scholar 

  56. Galoyan, G. et al. Geology, geochemistry and 40Ar/39Ar dating of Sevan ophiolites (Lesser Caucasus, Armenia): evidence for Jurassic back-arc opening and hot spot event between the South Armenian Block and Eurasia. J. Asian Earth Sci. 34, 135–153 (2009).

    Article  Google Scholar 

  57. Çelik, Ö. F. et al. Jurassic metabasic rocks in the Kızılırmak accretionary complex (Kargı region, Central Pontides, Northern Turkey). Tectonophysics 672–673, 34–49 (2016).

    Article  Google Scholar 

  58. Topuz, G. et al. Jurassic ophiolite formation and emplacement as backstop to a subduction–accretion complex in northeast Turkey, the Refahiye ophiolite, and relation to the Balkan ophiolites. Am. J. Sci. 313, 1054–1087 (2014).

    Article  Google Scholar 

  59. Ao, S. et al. U–Pb zircon ages, field geology and geochemistry of the Kermanshah ophiolite (Iran): from continental rifting at 79 Ma to oceanic core complex at ca. 36 Ma in the southern Neo-Tethys. Gondwana Res. 31, 305–318 (2016).

    Article  Google Scholar 

  60. Peters, T. & Mercolli, I. Extremely thin oceanic crust in the Proto-Indian Ocean: evidence from the Masirah ophiolite, Sultanate of Oman. J. Geophys. Res. Solid Earth 103, 677–689 (1998).

    Article  Google Scholar 

  61. Gnos, E. et al. Bela oceanic lithosphere assemblage and its relation to the Reunion hotspot. Terra Nova 10, 90–95 (1998).

    Article  Google Scholar 

  62. Tapponnier, P., Mattauer, M., Proust, F. & Cassaigneau, C. Mesozoic ophiolites, sutures, and large-scale tectonic movements in Afghanistan. Earth Planet. Sci. Lett. 52, 355–371 (1981).

    Article  Google Scholar 

  63. van Hinsbergen, D. J. J. et al. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664 (2012).

    Article  Google Scholar 

  64. Yuan, J. et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India–Asia collision. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwaa173 (2020).

  65. Hébert, R. et al. The Indus–Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: first synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Res. 22, 377–397 (2012).

    Article  Google Scholar 

  66. Zahirovic, S. et al. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth Sci. Rev. 162, 293–337 (2016).

    Article  Google Scholar 

  67. Huang, W. et al. Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc: evidence from paleomagnetism, sediment provenance, and stratigraphy. Earth Planet. Sci. Lett. 415, 142–153 (2015).

    Article  Google Scholar 

  68. Westerweel, J. et al. Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data. Nat. Geosci. 12, 863–868 (2019).

    Article  Google Scholar 

  69. Jagoutz, O., Royden, L., Holt, A. F. & Becker, T. W. Anomalously fast convergence of India and Eurasia caused by double subduction. Nat. Geosci. 8, 475–478 (2015).

    Article  Google Scholar 

  70. Höink, T. & Lenardic, A. Long wavelength convection, Poiseuille–Couette flow in the low-viscosity asthenosphere and the strength of plate margins. Geophys. J. Int. 180, 23–33 (2010).

    Article  Google Scholar 

  71. Höink, T., Jellinek, A. M. & Lenardic, A. Viscous coupling at the lithosphere–asthenosphere boundary. Geochem. Geophys. Geosyst. 12, Q0AK02 (2011).

    Article  Google Scholar 

  72. Campbell, I. H. Testing the plume theory. Chem. Geol. 241, 153–176 (2007).

    Article  Google Scholar 

  73. Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. A failure to reject: testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. Geochem. Geophys. Geosyst. 17, 1130–1163 (2016).

    Article  Google Scholar 

  74. Steinberger, B. Topography caused by mantle density variations: observation-based estimates and models derived from tomography and lithosphere thickness. Geophys. J. Int. 205, 604–621 (2016).

    Article  Google Scholar 

  75. Steinberger, B. & Becker, T. W. A comparison of lithospheric thickness models. Tectonophysics 746, 325–338 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

D.J.J.v.H. acknowledges funding through European Research Council Starting Grant 306810 (SINK) (also funding M.M., D.G., A.P. and E.L.A.), Netherlands Organization for Scientific Research (NWO) Vidi grant 864.11.004 (also funding K.P. and P.J.M.) and Netherlands Organization for Scientific Research (NWO) Vici grant 865.17.001. B.S. and C. Gaina received funding from the Research Council of Norway through its Centres of Excellence funding scheme, project no. 223272. B.S. acknowledges the innovation pool of the Helmholtz Association through the Advanced Earth System Modelling Capacity (ESM) activity. C. Guilmette was funded through Discovery Grant (RGPIN-2014-05681) from the National Science and Engineering Research Council of Canada. We thank I. L. ten Kate and D. Bandyopadhyay for discussion and F. Capitanio and D. Müller for their comments.

Author information

Authors and Affiliations

Authors

Contributions

D.J.J.v.H., B.S. and W.S. designed the research. D.J.J.v.H., C. Guilmette, M.M., D.G., K.P., A.P., P.J.M., C. Gaina, E.L.A. and R.L.M.V. developed the kinematic reconstruction; B.S. performed modelling; D.J.J.v.H., B.S., C. Guilmette and W.S. wrote the paper and all authors made corrections and edits.

Corresponding author

Correspondence to Douwe J. J. van Hinsbergen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks R. Dietmar Muller, Fabio Capitanio and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Stefan Lachowycz.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Hinsbergen, D.J.J., Steinberger, B., Guilmette, C. et al. A record of plume-induced plate rotation triggering subduction initiation. Nat. Geosci. 14, 626–630 (2021). https://doi.org/10.1038/s41561-021-00780-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00780-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing