Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

J. E. Nichols and D. M. Peteet reply

The Original Article was published on 28 June 2021

The Original Article was published on 28 June 2021

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recalculated jC for Holocene peats using only data from T16 and without using any area-weighting schemes to directly compare only our probabilistic jC compositing method with the 500-year age binning jC compositing method that is traditionally used.
Fig. 2: Data used to estimate peat carbon stocks using the inventory method and a comparison of stock estimates using both the inventory method and the time-history method.

References

  1. Yu, Z. et al. No support for carbon storage of >1,000 GtC in northern peatlands. Nat. Geosci. https://doi.org/10.1038/s41561-021-00769-2 (2021).

  2. Ratcliffe, J. L., Peng, H., Nijp, J. J. & Nilsson, M. B. Lateral expansion of northern peatlands calls into question a 1,055 GtC estimate of carbon storage. Nat. Geosci. https://doi.org/10.1038/s41561-021-00770-9 (2021).

  3. Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 89, 156–177 (2018).

    Article  Google Scholar 

  4. Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    Article  Google Scholar 

  5. Nichols, J. E. & Peteet, D. M. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nat. Geosci. 12, 917–921 (2019).

    Article  Google Scholar 

  6. Blaauw, M., Bakker, R., Christen, J., Hall, V. & van der Plicht, J. A Bayesian framework for age modeling of radiocarbon-dated peat deposits: case studies from the Netherlands. Radiocarbon 49, 357–368 (2007).

    Article  Google Scholar 

  7. Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).

    Google Scholar 

  8. Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene https://doi.org/10.1177/0959683614538073 (2014).

  9. Treat, C. C. et al. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils. J. Geophys. Res. Biogeosciences 121, 78–94 (2016).

    Article  Google Scholar 

  10. Macdonald, G. M. et al. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314, 285–288 (2006).

    Article  Google Scholar 

  11. Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).

    Article  Google Scholar 

  12. Kaufman, D. S. et al. Holocene thermal maximum in the western Arctic (0–180°W). Quat. Sci. Rev. 23, 529–560 (2004).

    Article  Google Scholar 

  13. Peteet, D. M., Nichols, J. E., Moy, C. M., McGeachy, A. & Perez, M. Recent and Holocene climate change controls on vegetation and carbon accumulation in Alaskan coastal muskegs. Quat. Sci. Rev. 131, 168–178 (2016).

    Article  Google Scholar 

  14. Nichols, J. E., Peteet, D. M., Frolking, S. & Karavias, J. A probabilistic method of assessing carbon accumulation rate at Imnavait Creek Peatland, Arctic Long Term Ecological Research Station, Alaska. J. Quat. Sci. 45, 579–586 (2017).

    Article  Google Scholar 

  15. Peterson, C. D., Lisiecki, L. E. & Stern, J. V. Deglacial whole-ocean δ13C change estimated from 480 benthic foraminiferal records. Paleoceanography 29, 549–563 (2014).

    Article  Google Scholar 

  16. Peterson, C. D. & Lisiecki, L. E. Deglacial carbon cycle changes observed in a compilation of 127 benthic δ13C time series (20–6 ka). Climate 14, 1229–1252 (2018).

    Google Scholar 

  17. Studer, A. S. et al. Antarctic zone nutrient conditions during the last two glacial cycles. Paleoceanography 30, 845–862 (2015).

    Article  Google Scholar 

  18. Studer, A. S. et al. Increased nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise. Nat. Geosci. 11, 756–760 (2018).

    Article  Google Scholar 

  19. Davies-Walczak, M. et al. Late glacial to Holocene radiocarbon constraints on North Pacific Intermediate Water ventilation and deglacial atmospheric CO2 sources. Earth Planet. Sci. Lett. 397, 57–66 (2014).

    Article  Google Scholar 

  20. Schmittner, A. & Somes, C. J. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean’s soft-tissue biological pump. Paleoceanography 31, 669–693 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.E.N. performed the calculations and prepared the figures. Both J.E.N. and D.M.P. wrote the text.

Corresponding author

Correspondence to Jonathan E. Nichols.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

List of geochronological datasets accessed from Neotoma and used in ref. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nichols, J.E., Peteet, D.M. J. E. Nichols and D. M. Peteet reply. Nat. Geosci. 14, 470–472 (2021). https://doi.org/10.1038/s41561-021-00771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00771-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing