Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems


Redox-driven biogeochemical element cycles play a central role in converting organic matter in aquatic ecosystems. They also perform key functions such as removing nitrate, mitigating the formation of greenhouse gases and weakening the effects of contaminants. Recent research has revealed the presence of redox-active compounds in these ecosystems with hitherto unknown redox properties. These substances are metastable (that is, non-equilibrium solid phases), which can both donate and accept electrons. They are highly redox reactive and recyclable and may act as biogeobatteries by temporarily storing electrons. Their lifetime, however, is limited, and with time they become more crystalline and less reactive. In this Review, we argue that these redox-active metastable phases require activation by fluctuating redox conditions to maintain their high reactivity. In aquatic ecosystems, switching between oxidizing and reducing conditions can be achieved only through hydrological perturbations at hydrological interfaces (for example, water level fluctuations). We present a novel framework that links microscale biogeochemical processes to large-scale hydrological processes, and discuss implications and future research directions for biogeochemical element cycles in aquatic systems exposed to frequent hydrological disturbances.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic of RAMP ripening.
Fig. 2: Hot spots of dissolved Fe(II) concentration in pore waters of a wetland following water level fluctuations and rainfall events.
Fig. 3: Influence of hydrological fluctuations on RAMPs.


  1. 1.

    Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    Article  Google Scholar 

  2. 2.

    Zimmerman, J. B., Mihelcic, J. R. & Smith, J. Global stressors on water quality and quantity. Environ. Sci. Technol. 42, 4247–4254 (2008).

    Article  Google Scholar 

  3. 3.

    Banwart, S. A., Nikolaidis, N. P., Zhu, Y.-G., Peacock, C. L. & Sparks, D. L. Soil functions: connecting Earth’s critical zone. Annu. Rev. Earth Planet. Sci. Lett. 47, 333–359 (2019).

    Article  Google Scholar 

  4. 4.

    Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (Cambridge Univ. Press, 2013).

  5. 5.

    Knorr, K. H., Lischeid, G. & Blodau, C. Dynamics of redox processes in a minerotrophic fen exposed to a water table manipulation. Geoderma 153, 379–392 (2009).

    Article  Google Scholar 

  6. 6.

    McClain, M. E. et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312 (2003).

    Article  Google Scholar 

  7. 7.

    Yabusaki, S. B. et al. Water table dynamics and biogeochemical cycling in a shallow, variably-saturated floodplain. Environ. Sci. Technol. 51, 3307–3317 (2017).

    Article  Google Scholar 

  8. 8.

    Krause, S. et al. Ecohydrological interfaces as hot spots of ecosystem processes. Water Resour. Res. 53, 6359–6376 (2017).

    Article  Google Scholar 

  9. 9.

    Stumm W. & Morgan J. J. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters 3rd edn (John Wiley & Sons, 1996).

  10. 10.

    Aeschbacher, M., Vergari, D., Schwarzenbach, R. P. & Sander, M. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environ. Sci. Technol. 45, 8385–8394 (2011).

    Article  Google Scholar 

  11. 11.

    Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol. 16, 41–84 (2000).

    Article  Google Scholar 

  12. 12.

    Kostka, J. E. & Nealson, K. H. Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29, 2535–2540 (1995).

    Article  Google Scholar 

  13. 13.

    Piepenbrock, A., Dippon, U., Porsch, K., Appel, E. & Kappler, A. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations. Geochim. Cosmochim. Acta 75, 6844–6858 (2011).

    Article  Google Scholar 

  14. 14.

    Amstaetter, K., Borch, T., Larese-Casanova, P. & Kappler, A. Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 44, 102–108 (2010).

    Article  Google Scholar 

  15. 15.

    Ilgen, A. G., Foster, A. L. & Trainor, T. P. Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony. Geochim. Cosmochim. Acta 94, 128–145 (2012).

    Article  Google Scholar 

  16. 16.

    Lan, S. et al. Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II). Water Res. 128, 92–101 (2018).

    Article  Google Scholar 

  17. 17.

    Lovley, D. R. et al. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydroch. Hydrob. 26, 152–157 (1998).

    Article  Google Scholar 

  18. 18.

    Lovley, D. R., Fraga, J. L., Coates, J. D. & Blunt-Harris, E. L. Humics as an electron donor for anaerobic respiration. Environ. Microbiol. 1, 89–98 (1999).

    Article  Google Scholar 

  19. 19.

    Peretyazhko, T. & Sposito, G. Reducing capacity of terrestrial humic acids. Geoderma 137, 140–146 (2006).

    Article  Google Scholar 

  20. 20.

    Heitmann, T. & Blodau, C. Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem. Geol. 235, 12–20 (2006).

    Article  Google Scholar 

  21. 21.

    Yu, Z. G., Peiffer, S., Goettlicher, J. & Knorr, K. H. Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous sulfide by dissolved organic matter. Environ. Sci. Technol. 49, 5441–5449 (2015).

    Article  Google Scholar 

  22. 22.

    Rose, A. L. & Waite, T. D. Kinetics of iron complexation by dissolved natural organic matter in coastal waters. Mar. Chem. 84, 85–103 (2003).

    Article  Google Scholar 

  23. 23.

    Bauer, I. & Kappler, A. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances. Environ. Sci. Technol. 43, 4902–4908 (2009).

    Article  Google Scholar 

  24. 24.

    Uchimiya, M. & Stone, A. T. Reversible redox chemistry of quinones: impact on biogeochemical cycles. Chemosphere 77, 451–458 (2009).

    Article  Google Scholar 

  25. 25.

    Borch, T. et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44, 15–23 (2010).

    Article  Google Scholar 

  26. 26.

    Ilgen, A. G., Kukkadapu, R. K., Leung, K. & Washington, R. E. ‘Switching on’ iron in clay minerals. Environ. Sci. Nano 6, 1704–1715 (2019).

    Article  Google Scholar 

  27. 27.

    Peiffer, S., dos Santos Afonso, M., Wehrli, B. & Gaechter, R. Kinetics and mechanism of the reaction of hydrogen sulfide with lepidocrocite. Environ. Sci. Technol. 26, 2408–2413 (1992).

    Article  Google Scholar 

  28. 28.

    Poulton, S. W., Krom, M. D. & Raiswell, R. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 68, 3703–3715 (2004).

    Article  Google Scholar 

  29. 29.

    Hellige, K., Pollok, K., Larese-Casanova, P., Behrends, T. & Peiffer, S. Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces. Geochim. Cosmochim. Acta 81, 69–81 (2012).

    Article  Google Scholar 

  30. 30.

    Wan, M., Shchukarev, A., Lohmayer, R., Planer-Friedrich, B. & Peiffer, S. Occurrence of surface polysulfides during the interaction between ferric (hydr)oxides and aqueous sulfide. Environ. Sci. Technol. 48, 5076–5084 (2014).

    Article  Google Scholar 

  31. 31.

    Hedderich, R. et al. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol. Rev. 22, 353–381 (1998).

    Article  Google Scholar 

  32. 32.

    Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–546 (2012).

    Article  Google Scholar 

  33. 33.

    Poser, A. et al. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles 17, 1003–1012 (2013).

    Article  Google Scholar 

  34. 34.

    Aeppli, M. et al. Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environ. Sci. Technol. 53, 8736–8746 (2019).

    Article  Google Scholar 

  35. 35.

    Aeppli, M. et al. Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environ. Sci. Technol. 53, 3568–3578 (2019).

    Article  Google Scholar 

  36. 36.

    Klüpfel, L., Piepenbrock, A., Kappler, A. & Sander, M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 7, 195–200 (2014).

    Article  Google Scholar 

  37. 37.

    Blodau, C. Carbon cycling in peatlands—a review of processes and controls. Environ. Rev. 10, 111–134 (2002).

    Article  Google Scholar 

  38. 38.

    Gao, C., Sander, M., Agethen, S. & Knorr, K.-H. Electron accepting capacity of dissolved and particulate organic matter control CO2 and CH4 formation in peat soils. Geochim. Cosmochim. Acta 245, 266–277 (2019).

    Article  Google Scholar 

  39. 39.

    Schaefer, M. V., Gorski, C. A. & Scherer, M. M. Spectroscopic evidence for interfacial Fe(II)–Fe(III) electron transfer in a clay mineral. Environ. Sci. Technol. 45, 540–545 (2011).

    Article  Google Scholar 

  40. 40.

    Pentrakova, L., Su, K., Pentrak, M. & Stucko, J. W. A review of microbial redox interactions with structural Fe in clay minerals. Clay Miner. 48, 543–560 (2013).

    Article  Google Scholar 

  41. 41.

    Kostka, J. E., Dalton, D. D., Skelton, H., Dollhopf, S. & Stucki, J. W. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Appl. Environ. Microbiol. 68, 6256–6262 (2002).

    Article  Google Scholar 

  42. 42.

    Li, Y. L. et al. Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochim. Cosmochim. Acta 68, 3251–3260 (2004).

    Article  Google Scholar 

  43. 43.

    Liu, D. et al. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochim. Cosmochim. Acta 75, 1057–1071 (2011).

    Article  Google Scholar 

  44. 44.

    Zhang, J., Dong, H., Liu, D. & Agrawal, A. Microbial reduction of Fe(III) in smectite minerals by thermophilicmethanogen Methanothermobacter thermautotrophicus. Geochim. Cosmochim. Acta 106, 203–215 (2013).

    Article  Google Scholar 

  45. 45.

    Shelobolina, E. et al. Microbial lithotrophic oxidation of structural Fe(II) in biotite. Appl. Environ. Microbiol. 78, 5746–5752 (2012).

    Article  Google Scholar 

  46. 46.

    Gorski, C. A. et al. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. Environ. Sci. Technol. 46, 9360–9368 (2012).

    Article  Google Scholar 

  47. 47.

    Blodau, C., Mayer, B., Peiffer, S. & Moore, T. R. Support for an anaerobic sulfur cycle in two Canadian peatland soils. J. Geophys. Res. 112, G000364 (2007).

    Article  Google Scholar 

  48. 48.

    Gauci, V., Dise, N. & Fowler, D. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition. Glob. Biogeochem. Cycles 16, GB001370 (2002).

    Article  Google Scholar 

  49. 49.

    Pester, M., Knorr, K. H., Friedrich, M. W., Wagner, M. & Loy, A. Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Front. Microbiol. 3, 72 (2012).

    Article  Google Scholar 

  50. 50.

    Hansel, C. M., Ferdelman, T. G. & Tebo, B. M. Cryptic cross-linkages among biogeochemical cycles: novel insights from reactive intermediates. Elements 11, 409–414 (2015).

    Article  Google Scholar 

  51. 51.

    Kappler, A. & Bryce, C. Cryptic biogeochemical cycles: unravelling hidden redox reactions. Environ. Microbiol. 19, 842–846 (2017).

    Article  Google Scholar 

  52. 52.

    Holmkvist, L., Ferdelman, T. G. & Jørgensen, B. B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 75, 3581–3599 (2011).

    Article  Google Scholar 

  53. 53.

    Hansel, C. M. et al. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. ISME J. 9, 2400–2412 (2015b).

    Article  Google Scholar 

  54. 54.

    Findlay, A. J. Microbial impact on polysulfide dynamics in the environment. FEMS Microbiol. Lett.

  55. 55.

    Berg, J. S. et al. Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Environ. Microbiol. 18, 5288–5302 (2016).

    Article  Google Scholar 

  56. 56.

    Peng, C., Bryce, C., Sundman, A. & Kappler, A.Cryptic cycling of complexes containing Fe(III) and organic matter by phototrophic Fe(II)-oxidizing bacteria. Appl. Environ. Microbiol. 85, e02826-18 (2019).

    Article  Google Scholar 

  57. 57.

    Bethke, C. M., Sanford, R. A., Kirk, M. F., Jin, Q. & Flynn, T. M. The thermodynamic ladder in geomicrobiology. Am. J. Sci. 311, 183–210 (2011).

    Article  Google Scholar 

  58. 58.

    Otte, J. M. et al. The distribution of active iron cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environ. Microbiol. 20, 2483–2499 (2018).

    Article  Google Scholar 

  59. 59.

    Steefel, C. I. & van Cappellen, P. A new kinetic approach to modeling water–rock interaction: the role of nucleation, precursors, and Ostwald ripening. Geochim. Cosmochim. Acta 54, 2657–2677 (1990).

    Article  Google Scholar 

  60. 60.

    Vinson, D. S., Block, S. E., Crossey, L. J. & Dahm, C. N. Biogeochemistry at the zone of intermittent saturation: field-based study of the shallow alluvial aquifer, Rio Grande, New Mexico. Geosphere 3, 366–380 (2007).

    Article  Google Scholar 

  61. 61.

    Frei, S., Knorr, K., Peiffer, S. & Fleckenstein, J. Surface micro-topography causes hot spots of biogeochemical activity in wetland systems: a virtual modeling experiment. J. Geophys. Res. Biogeosciences 117, G00N12 (2012).

    Article  Google Scholar 

  62. 62.

    Briggs, M. A. et al. A physical explanation for the development of redox microzones in hyporheic flow. Geophys. Res. Lett. 42, 4402–4410 (2015).

    Article  Google Scholar 

  63. 63.

    Stockdale, A., Davison, W. & Zhang, H. Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidence. Earth Sci. Rev. 92, 81–97 (2009).

    Article  Google Scholar 

  64. 64.

    Sawyer, A. H. Enhanced removal of groundwater-borne nitrate in heterogeneous aquatic sediments. Geophys. Res. Lett. 42, 403–410 (2015).

    Article  Google Scholar 

  65. 65.

    Arora, B., Dwivedi, D., Hubbard, S. S., Steefel, C. I. & Williams, K. H. Identifying geochemical hot moments and their controls on a contaminated river floodplain system using wavelet and entropy approaches. Environ. Model. Softw. 85, 27–41 (2016).

    Article  Google Scholar 

  66. 66.

    Sawyer, A. H., Kaplan, L. A., Lazareva, O. & Michael, H. A. Hydrologic dynamics and geochemical responses within a floodplain aquifer and hyporheic zone during Hurricane Sandy. Water Resour. Res. 50, 4877–4892 (2014).

    Article  Google Scholar 

  67. 67.

    Posth, N., Canfield, D. E. & Kappler, A. Biogenic Fe(III) minerals: from formation to diagenesis and preservation in the rock record. Earth Sci. Rev. 135, 103–121 (2014).

    Article  Google Scholar 

  68. 68.

    Tomaszewski, E. J., Cronk, S. S., Gorski, C. A. & Ginder-Vogel, M. The role of dissolved Fe(II) concentration in the mineralogical evolution of Fe (hydr)oxides during redox cycling. Chem. Geol. 438, 163–170 (2016).

    Article  Google Scholar 

  69. 69.

    Bishop, M. E. et al. Reactivity of redox cycled Fe-bearing subsurface sediments towards hexavalent chromium reduction. Geochim. Cosmochim. Acta 252, 88–106 (2019).

    Article  Google Scholar 

  70. 70.

    Bartsch, S. et al. River–aquifer exchange fluxes under monsoonal climate conditions. J. Hydrol. 509, 601–614 (2014).

    Article  Google Scholar 

  71. 71.

    McAllister, S. M. et al. Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer. Limnol. Oceanogr. 60, 329–345 (2015).

    Article  Google Scholar 

  72. 72.

    Goldberg, S. D., Knorr, K. ‐H., Blodau, C., Lischeid, G. & Gebauer, G. Impact of altering the water table height of an acidic fen on N2O and NO fluxes and soil concentrations. Glob. Change Biol. 16, 220–233 (2010).

    Article  Google Scholar 

  73. 73.

    Moore, T. R. et al. A multi-year record of methane flux at the Mer Bleue bog, Southern Canada. Ecosystems 14, 646–657 (2011).

    Article  Google Scholar 

  74. 74.

    Brown, M. G., Humphreys, E. R., Moore, T. R., Roulet, N. T. & Lafleur, P. M. Evidence for a nonmonotonic relationship between ecosystem-scale peatland methane emissions and water table depth. J. Geophys. Res. Biogeosciences 119, 826–835 (2014).

    Article  Google Scholar 

  75. 75.

    Estop-Aragonés, C., Zając, K. & Blodau, C. Effects of extreme experimental drought and rewetting on CO2 and CH4 exchange in mesocosms of 14 European peatlands with different nitrogen and sulfur deposition. Glob. Change Biol. 22, 2285–2300 (2016).

    Article  Google Scholar 

  76. 76.

    Chamberlain, S. D. et al. Soil properties and sediment accretion modulate methane fluxes from restored wetlands. Glob. Change Biol. 24, 4107–4121 (2018).

    Article  Google Scholar 

  77. 77.

    Arora, B. et al. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment. Biogeochemistry 127, 367–396 (2016).

    Article  Google Scholar 

  78. 78.

    Frei, S. & Peiffer, S. Exposure times rather than residence times control redox transformation efficiencies in Riparian Wetlands. J. Hydrol. 543, 182–196 (2016).

    Article  Google Scholar 

  79. 79.

    Dwivedi, D., Arora, B., Steefel, C. I., Dafflon, B. & Versteeg, R. Hot spots and hot moments of nitrogen in a riparian corridor. Water Resour. Res. 54, 205–222 (2018).

    Article  Google Scholar 

  80. 80.

    Peiffer, S., Klemm, O., Pecher, K. & Hollerung, R. Redox measurements in aqueous solutions—a theoretical approach to data interpretation, based on electrode kinetics. J. Contam. Hydrol. 10, 1–18 (1992).

    Article  Google Scholar 

  81. 81.

    Wainwright, H. M. et al. Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging. Water Resour. Res. 52, 533–551 (2016).

    Article  Google Scholar 

  82. 82.

    Mellage, A. et al. Sensing coated iron-oxide nanoparticles with spectral induced polarization (SIP): experiments in natural sand packed flow-through columns. Environ. Sci. Technol. 52, 14256–14265 (2018).

    Article  Google Scholar 

  83. 83.

    Revil, A., Florsch, N. & Mao, D. Induced polarization response of porous media with metallic particles—part 1: a theory for disseminated semiconductors. Geophysics 80, D525–D538 (2015).

    Article  Google Scholar 

  84. 84.

    Revil, A., Abdel Aal, G. Z., Atekwana, E. A., Mao, D. & Florsch, N. Induced polarization response of porous media with metallic particles—part 2: comparison with a broad database of experimental data. Geophysics 80, D539–D552 (2015).

    Article  Google Scholar 

  85. 85.

    Pausch, J. & Kuzyakov, Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob. Change Biol. 24, 1–12 (2018).

    Article  Google Scholar 

  86. 86.

    Dwivedi, D. et al. Geochemical exports to river from the intrameander hyporheic zone under transient hydrologic conditions: East River mountainous watershed, Colorado. Water Resour. Res. 54, 8456–8477 (2018).

    Article  Google Scholar 

  87. 87.

    Jin, Q. & Bethke, C. M. The thermodynamics and kinetics of microbial metabolism. Am. J. Sci. 307, 643–677 (2007).

    Article  Google Scholar 

  88. 88.

    Nitzsche, K. S. et al. Arsenic removal from drinking water by a household sand filter in Vietnam—effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Sci. Total Environ. 502, 526–536 (2015).

    Article  Google Scholar 

  89. 89.

    Appelo, C. A. J. & Postma, D. Geochemistry, Groundwater and Pollution (CRC Press, 2004).

  90. 90.

    Brazhkin, V. V. Metastable phases and ‘metastable’ phase diagrams. J. Phys. Condens. Matter 18, 9643–9650 (2006).

    Article  Google Scholar 

  91. 91.

    Cornell, R. M. & Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley-VCH, 2006).

  92. 92.

    Ahmed, I. A. M. & Maher, B. A. Identification and paleoclimatic significance of magnetite nanoparticles in soils. Proc. Natl Acad. Sci. USA 115, 1736–1741 (2018).

    Article  Google Scholar 

  93. 93.

    Engel, M. H. & Macko, S. A. Organic Geochemistry. Principles and Applications (Springer, 1993).

  94. 94.

    Lovley, D. R. & Phillips, E. J. P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).

    Article  Google Scholar 

  95. 95.

    Gorski, C. A. & Scherer, M. M. in Aquatic Redox Chemistry (eds Tratnyek, P. G. et al.) 315–343 (ACS, 2011).

  96. 96.

    Orsetti, S., Laskov, C. & Haderlein, S. B. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)–goethite surface from AQDS speciation. Environ. Sci. Technol. 47, 14161–14168 (2013).

    Article  Google Scholar 

  97. 97.

    Gorski, C. A., Edwards, R., Sander, M., Hofstetter, T. B. & Stewart, S. M. Thermodynamic characterization of iron oxide–aqueous Fe2+ redox couples. Environ. Sci. Technol. 50, 8538–8547 (2016).

    Article  Google Scholar 

  98. 98.

    Byrne, J. M. et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476 (2015).

    Article  Google Scholar 

Download references


This article is the outcome of discussions that took place in a series of workshops organized by the authors on the role of redox-active compounds in aquatic ecosystems.

Author information




All authors participated in generating the concept. S.P., C.S. and M.O. drafted the first versions of the figures. All authors contributed to writing and editing.

Corresponding author

Correspondence to S. Peiffer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Matthew Kirk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Tamara Goldin; Xujia Jiang.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peiffer, S., Kappler, A., Haderlein, S.B. et al. A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems. Nat. Geosci. 14, 264–272 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing