Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Arctic sea-ice loss fuels extreme European snowfall

Abstract

The loss of Arctic sea-ice has been implicated with severe cold and snowy mid-latitude winters. However, the mechanisms and a direct link remain elusive due to limited observational evidence. Here we present atmospheric water vapour isotope measurements from Arctic Finland during ‘the Beast from the East’—a severe anticyclonic outbreak that brought heavy snowfall and freezing across Europe in February 2018. We find that an anomalously warm Barents Sea, with a 60% ice-free surface, supplied up to 9.3 mm d−1 moisture flux to this cold northeasterly airflow. We demonstrate that approximately 140 gigatonnes of water was evaporated from the Barents Sea during the event, potentially supplying up to 88% of the corresponding fresh snow over northern Europe. Reanalysis data show that from 1979 to 2020, net March evaporation across the Barents Sea increased by approximately 70 kg per square metre of sea-ice lost (r2 = 0.73, P < 0.01), concurrent with a 1.6 mm (water equivalent) per year increase in Europe’s maximum snowfall. Our analysis directly links Arctic sea-ice loss with increased evaporation and extreme snowfall, and signifies that by 2080, an Atlantified ice-free Barents Sea will be a major source of winter moisture for continental Europe.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Synoptic climatology during the Beast from the East.
Fig. 2: Observations during winter 2017–18.
Fig. 3: Barents Sea moisture advection to Northern Europe.
Fig. 4: Historical Arctic sea-ice and atmospheric moisture links.

Data availability

Pallas meteorological data are available at https://en.ilmatieteenlaitos.fi/download-observations. Stable isotope and mixing ratio data presented in Fig. 2 are available in the Supplementary Data file and on the Zenodo repository (https://doi.org/10.5281/zenodo.4452714). Gridded ERA5 and GDAS reanalysis data are available from https://cds.climate.copernicus.eu/ and https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas. Sea-ice data are available from https://nsidc.org/data. NAO index data are available from: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml. GlobSnow 3.0 data are available from: http://www.globsnow.info/swe/archive_v3.0/.

Code availability

R-language scripts used to post-process the Picarro data are available from the corresponding author upon request.

References

  1. Screen, J. A. et al. Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci. 11, 155–163 (2018).

    Article  Google Scholar 

  2. Vihma, T. et al. The atmospheric role in the Arctic water cycle: a review on processes, past and future changes, and their impacts. J. Geophys. Res. Biogeosci. 121, 586–620 (2016).

    Article  Google Scholar 

  3. Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).

    Article  Google Scholar 

  4. Bintanja, R. & Selten, F. M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509, 479–482 (2014).

    Article  Google Scholar 

  5. Kim, K. Y. et al. Vertical feedback mechanism of winter arctic amplification and sea ice loss. Sci. Rep. 9, 1184 (2019).

    Article  Google Scholar 

  6. Boisvert, L. N., Wu, D. L. & Shie, C.-L. Increasing evaporation amounts seen in the Arctic between 2003 and 2013 from AIRS data. J. Geophys. Res. Atmos. 120, 6865–6881 (2015).

    Article  Google Scholar 

  7. Kopec, B. G., Feng, X., Michel, F. A. & Posmentier, E. S. Influence of sea ice on Arctic precipitation. Proc. Natl Acad. Sci. USA 113, 46–51 (2016).

    Article  Google Scholar 

  8. Jun, S.-Y., Ho, C.-H., Jeong, J.-H., Choi, Y.-S. & Kim, B.-M. Recent changes in winter Arctic clouds and their relationships with sea ice and atmospheric conditions. Tellus A 68, 29130 (2016).

    Article  Google Scholar 

  9. Lind, S., Ingvaldsen, R. B. & Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8, 634–639 (2018).

    Article  Google Scholar 

  10. Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Sea Ice Index Version 3 (National Snow and Ice Data Center, 2017); https://nsidc.org/data/seaice_index/archives

  11. Pulliainen, J. et al. Patterns and trends of northern hemisphere snow mass from 1980 to 2018. Nature 581, 294–298 (2020).

    Article  Google Scholar 

  12. Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

    Article  Google Scholar 

  13. Cohen, J. L., Furtado, J. C., Barlow, M. A., Alexeev, V. A. & Cherry, J. E. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett. 7, 014007 (2012).

    Article  Google Scholar 

  14. Mori, M., Kosaka, Y., Watanabe, M., Nakamura, H. & Kimoto, M. A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nat. Clim. Change 9, 123–129 (2019).

    Article  Google Scholar 

  15. Kim, B. M. et al. Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun. 5, 4646 (2014).

    Article  Google Scholar 

  16. Mori, M., Watanabe, M., Shiogama, H., Inoue, J. & Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 7, 869–873 (2014).

    Article  Google Scholar 

  17. Liu, J., Curry, J. A., Wang, H., Song, M. & Horton, R. M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl Acad. Sci. USA 109, 4074–4079 (2012).

    Article  Google Scholar 

  18. Cohen, J. et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Change 10, 20–29 (2020).

    Article  Google Scholar 

  19. Pedersen, R. A., Cvijanovic, I., Langen, P. L. & Vinther, B. M. The impact of regional Arctic Sea ice loss on atmospheric circulation and the NAO. J. Clim. 29, 889–902 (2016).

    Article  Google Scholar 

  20. Yang, X.-Y., Yuan, X. & Ting, M. Dynamical link between the Barents–Kara sea ice and the Arctic Oscillation. J. Clim. 29, 5103–5122 (2016).

    Article  Google Scholar 

  21. Jung, T., Vitart, F., Ferranti, L. & Morcrette, J. J. Origin and predictability of the extreme negative NAO winter of 2009/10. Geophys. Res. Lett. 38, L07701 (2011)

  22. Lü, Z., Fei, L. I., Orsolini, Y. J., Yongqi, G. A. O. & Shengping, H. E. Understanding of European cold extremes, sudden stratospheric warming, and Siberian snow accumulation in the winter of 2017/18. J. Clim. 33, 527–545 (2020).

    Article  Google Scholar 

  23. Greening, K. & Hodgson, A. Atmospheric analysis of the cold late February and early March 2018 over the UK. Weather 74, 79–85 (2019).

    Article  Google Scholar 

  24. Cohen, J., Jones, J., Furtado, J. C. & Tziperman, E. Warm Arctic, cold continents a common pattern related to Arctic sea ice melt, snow advance, and extreme winter weather. Oceanography 26, 150–160 (2013).

    Article  Google Scholar 

  25. Faranda, D. An attempt to explain recent changes in European snowfall extremes. Weather Clim. Dynam. 1, 445–458 (2020).

    Article  Google Scholar 

  26. Galewsky, J. Constraining supersaturation and transport processes in a south American cold-air outbreak using stable isotopologues of water vapor. J. Atmos. Sci. 72, 2055–2069 (2015).

    Article  Google Scholar 

  27. Klein, E. S. et al. Arctic cyclone water vapor isotopes support past sea ice retreat recorded in Greenland ice. Sci. Rep. 5, 10295 (2015).

    Article  Google Scholar 

  28. Kurita, N. Origin of Arctic water vapor during the ice-growth season. Geophys. Res. Lett. 38, L02709 (2011).

    Article  Google Scholar 

  29. Overland, J. et al. The polar vortex and extreme weather: the Beast from the East in Winter 2018. Atmosphere 11, 664 (2020).

    Article  Google Scholar 

  30. Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).

    Article  Google Scholar 

  31. Bailey, H. L., Klein, E. S. & Welker, J. M. Synoptic and mesoscale mechanisms drive winter precipitation δ18O/δ2H in South-Central Alaska. J. Geophys. Res. Atmos. 124, 4252–4266 (2019).

    Article  Google Scholar 

  32. Bonne, J. L. et al. Resolving the controls of water vapour isotopes in the Atlantic sector. Nat. Commun. 10, 1632 (2019).

    Article  Google Scholar 

  33. Pfahl, S. & Sodemann, H. What controls deuterium excess in global precipitation? Clim. Past 10, 771–781 (2014).

    Article  Google Scholar 

  34. Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteor. 96, 2059–2077 (2015).

    Article  Google Scholar 

  35. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  Google Scholar 

  36. Luojus, K., Pulliainen, J., Takala, M., Lemmetyinen, J. & Moisander, M. GlobSnow v3.0 snow water equivalent (SWE) dataset. PANGAEA https://doi.org/10.1594/PANGAEA.911944 (2020).

  37. Smith, E. T. & Sheridan, S. C. Where do cold air outbreaks occur and how have they changed over time? Geophys. Res. Lett. 47, e2020GL086983 (2020).

  38. Onarheim, I. H., Eldevik, T., Smedsrud, L. H. & Stroeve, J. C. Seasonal and regional manifestation of Arctic sea ice loss. J. Clim. 31, 4917–4932 (2018).

    Article  Google Scholar 

  39. Onarheim, I. H. & Årthun, M. Toward an ice-free Barents Sea. Geophys. Res. Lett. 44, 8387–8395 (2017).

    Article  Google Scholar 

  40. Boisvert, L. N. & Stroeve, J. C. The Arctic is becoming warmer and wetter as revealed by the atmospheric infrared sounder. Geophys. Res. Lett. 42, 4439–4446 (2015).

    Article  Google Scholar 

  41. Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267 (2017).

    Article  Google Scholar 

  42. Huang, J. & Tian, W. Eurasian cold air outbreaks under different arctic stratospheric polar vortex strengths. J. Atmos. Sci. 76, 1245–1264 (2019).

    Article  Google Scholar 

  43. Ayarzagüena, B. & Screen, J. A. Future Arctic sea ice loss reduces severity of cold air outbreaks in midlatitudes. Geophys. Res. Lett. 43, 2801–2809 (2016).

    Article  Google Scholar 

  44. Screen, J. A. The missing northern European winter cooling response to arctic sea ice loss. Nat. Commun. 8, 14603 (2017).

    Article  Google Scholar 

  45. Bintanja, R. et al. Strong future increases in arctic precipitation variability linked to poleward moisture transport. Sci. Adv. 6, eaax6869 (2020).

    Article  Google Scholar 

  46. Zhang, X. et al. Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Clim. Change 3, 47–51 (2013).

    Article  Google Scholar 

  47. Steen-Larsen, H. C. et al. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet. Atmos. Chem. Phys. 13, 4815–4828 (2013).

    Article  Google Scholar 

  48. Aemisegger, F. et al. Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study. Atmos. Meas. Tech. 5, 1491–1511 (2012).

    Article  Google Scholar 

  49. Bonne, J.-L. et al. Moisture origin as a driver of temporal variabilities of the water vapour isotopic composition in the Lena River Delta, Siberia. Atmos. Chem. Phys. 20, 10493–10511 (2020).

    Article  Google Scholar 

  50. Ala-aho, P. et al. Arctic snow isotope hydrology: a comparative snow-water vapor study. Atmosphere 12, 150 (2021).

  51. Sodemann, H., Schwierz, C. & Wernli, H. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. Atmos. 113, D03107 (2008).

  52. Bailey, H. L., Kaufman, D. S., Henderson, A. C. G. & Leng, M. J. Synoptic scale controls on the δ18O in precipitation across Beringia. Geophys. Res. Lett. 42, 4608–4616 (2015).

    Article  Google Scholar 

  53. Läderach, A. & Sodemann, H. A revised picture of the atmospheric moisture residence time. Geophys. Res. Lett. 43, 924–933 (2016).

    Article  Google Scholar 

  54. Draxler, R. R. & Hess, G. D. An Overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust. Meteorol. Mag. 47, 295–308 (1998).

    Google Scholar 

  55. Kalnay, E. et al. The NCEP/NCAR 40-Year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    Article  Google Scholar 

  56. Nygård, T., Graversen, R. G., Uotila, P., Naakka, T. & Vihma, T. Strong dependence of wintertime arctic moisture and cloud distributions on atmospheric large-scale circulation. J. Clim. 32, 8771–8790 (2019).

    Article  Google Scholar 

  57. Martens, B. et al. Evaluating the land-surface energy partitioning in ERA5. Geosci. Model Dev. 13, 4159–4181 (2020).

    Article  Google Scholar 

  58. Albergel, C. et al. ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better? Hydrol. Earth Syst. Sci. 22, 3515–3532 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Academy of Finland (Grant 316014) and a University of the Arctic (UArctic) Research Chairship to J.M.W. The University of Oulu and Academy of Finland PROFI 4 (Grant 318930) provided additional research support through the Arctic Interactions project. H.B. acknowledges support from a UArctic Postdoctoral Fellowship. A.H. acknowledges support from the Research Council of Norway through its Centres of Excellence funding scheme (Grant 223259). The authors thank J. Hatakka and the Finnish Meteorological Institute and staff working at the Sammaltunturi Station. V. Hyöky (Metsähallitus) helped maintain the Picarro instrumentation and assisted with the humidity–isotope calibrations. P. Ala-aho assisted during the December 2017 field campaign. The NOAA Air Resources Laboratory is acknowledged for the provision of the HYSPLIT model used in this publication. Lastly, we thank J.-L. Bonne and J. Cohen for constructive comments on this paper.

Author information

Authors and Affiliations

Authors

Contributions

H.B. conducted the research, created the figures and wrote the manuscript. J.M.W. was the project’s principal investigator. H.B., A.H., E.S.K. and J.M.W. conceived and designed the study. J.M.W., E.S.K., K.-R.M. and H.M. conducted the fieldwork. K-R.M., E.S.K., H.M. and P.D.A. performed and/or contributed to the isotope data measurements and post-processing. H.B. and A.H. performed the back-trajectory and long-term analyses. All authors contributed comments and/or revisions to the manuscript.

Corresponding author

Correspondence to Hannah Bailey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Judah Cohen, Jean-Louis Bonne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tom Richardson.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7.

Supplementary Data 1

Pallas water vapour data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bailey, H., Hubbard, A., Klein, E.S. et al. Arctic sea-ice loss fuels extreme European snowfall. Nat. Geosci. 14, 283–288 (2021). https://doi.org/10.1038/s41561-021-00719-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00719-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing