Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multi-decadal trends in Antarctic sea-ice extent driven by ENSO–SAM over the last 2,000 years

Abstract

Antarctic sea ice has paradoxically become more extensive over the past four decades despite a warming climate. The regional expression of this trend has been linked to changes in vertical redistribution of ocean heat and large-scale wind-field shifts. However, the short length of modern observations has hindered attempts to attribute this trend to anthropogenic forcing or natural variability. Here, we present two new decadal-resolution records of sea ice and sea surface temperatures that document pervasive regional climate heterogeneity in Indian Antarctic sea-ice cover over the last 2,000 years. Data assimilation of our marine records in a climate model suggests that the reconstructed dichotomous regional conditions were driven by the multi-decadal variability of the El Niño Southern Oscillation and Southern Annular Mode (SAM). For example, during an El Niño/SAM– combination, the northward sea-ice transport was reduced while heat advection from the subtropics to the Southern Ocean increased, which resulted in reduced sea-ice extent in the Indian sector as sea ice was compacted along the Antarctic coast. Our results therefore indicate that natural variability is large in the Southern Ocean and suggest that it has played a crucial role in the recent sea-ice trends and their decadal variability in this region.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Location of studied marine cores and modern SO hydrographic features.
Fig. 2: Intercomparison of sea-ice and climate records over the last 2,000 years.
Fig. 3: Mean environmental conditions for the SST+/SIC+ composite and the SST+/SIC– composite based on offline DA using the CESM1-CAM5 model outputs.

Data availability

Diatom-based sea surface temperature data from core COR1GC can be found at https://doi.org/10.1594/PANGAEA.913621. Diatom and highly branched isoprenoid data from IODP Hole U1357B are available at https://doi.org/10.1594/PANGAEA.924721 and https://doi.org/10.1594/PANGAEA.924723, respectively.

Code availability

The results of the Last Millennium Ensemble performed with the CESM1 model are available at https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CESM_CAM5_LME.html.

References

  1. Hobbs, W. R. et al. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Change 143, 228–250 (2016).

    Article  Google Scholar 

  2. Rintoul, S. R. The global influence of localized dynamics in the Southern Ocean. Nature 558, 209–218 (2018).

    Article  Google Scholar 

  3. Parkinson, C. A 40-yr record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates in the Arctic. Proc. Natl Acad. Sci. USA 116, 14414–14423 (2019).

    Article  Google Scholar 

  4. Kwok, R., Comiso, J. C., Lee, T. & Holland, P. R. Linked trends in the South Pacific sea ice edge and Southern Oscillation Index. Geophys. Res. Lett. 43, 10295–10302 (2016).

    Article  Google Scholar 

  5. Meehl, G. A., Arblaster, J. A., Bitz, C. M., Chung, C. T. Y. & Teng, H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci. 9, 590–595 (2016).

    Article  Google Scholar 

  6. Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S. & Plumb, A. Antarctic Ocean and sea ice response to ozone depletion: a two-time-scale problem. J. Clim. 28, 1206–1226 (2015).

    Article  Google Scholar 

  7. Jones, J. M. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change 6, 917–926 (2016).

    Article  Google Scholar 

  8. Purich, A., Cai, W., England, M. H. & Cowan, T. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat. Commun. 7, 10409 (2016).

    Article  Google Scholar 

  9. Denis, D. et al. Sea ice and wind variability during the Holocene in East Antarctica: insight on middle–high latitude coupling. Quat. Sci. Rev. 29, 3709–3719 (2010).

    Article  Google Scholar 

  10. Divine, D. et al. Holocene Antarctic climate variability from ice and marine sediment cores: insights on ocean–atmosphere interaction. Quat. Sci. Rev. 29, 303–312 (2010).

    Article  Google Scholar 

  11. Peck, V. L., Allen, C. S., Kender, S., McClymont, E. R. & Hodgson, D. A. Oceanographic variability on the West Antarctic Peninsula during the Holocene and the influence of upper circumpolar deep water. Quat. Sci. Rev. 119, 54–65 (2015).

    Article  Google Scholar 

  12. Mezgec, K. et al. Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea. Nat. Commun. 8, 1334 (2017).

    Article  Google Scholar 

  13. Ashley, K. E. et al. Mid-Holocene Antarctic sea-ice increase driven by marine ice sheet retreat. Clim. Past 17, https://doi.org/10.5194/cp-17-1-2021 (2021).

  14. Orme, L. et al. Sea-surface temperature in the Indian sector of the Southern Ocean over the Late Glacial and Holocene. Clim. Past 16, 1451–1467 (2020).

    Article  Google Scholar 

  15. Campagne, P. et al. Sedimentary response to sea ice and atmospheric variability over the instrumental period off Adélie Land, East Antarctica. Biogeosciences 13, 4205–4218 (2016).

    Article  Google Scholar 

  16. Smik, L., Belt, S. T., Lieser, J. L., Armand, L. K. & Leventer, A. Distributions of highly branched isoprenoid alkenes and other algal lipids in surface waters from East Antarctica: further insights for biomarker-based paleo sea-ice reconstruction. Org. Geochem. 95, 71–80 (2016).

    Article  Google Scholar 

  17. Pike, J. et al. Observations on the relationship between the Antarctic coastal diatoms Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen and sea ice concentrations during the Late Quaternary. Mar. Micropaleontol. 73, 14–25 (2009).

    Article  Google Scholar 

  18. Armand, L. K., Crosta, X., Romero, O. & Pichon, J.-J. The biogeography of major diatom taxa in Southern Ocean sediments: 1. Sea ice related species. Palaeogeogr. Palaeoclimatol. Palaeoecol. 223, 93–126 (2005).

    Article  Google Scholar 

  19. Stenni, B. et al. Antarctic climate variability on regional and continental scales over the last 2000 years. Clim. Past 13, 1609–1634 (2017).

    Article  Google Scholar 

  20. Gordon, A. L. Seasonality of Southern Ocean sea-ice. J. Geophys. Res. 86, 4193–4197 (1981).

    Article  Google Scholar 

  21. Esper, O. & Gersonde, R. Quaternary surface water temperature estimations: new diatom transfer functions for the Southern Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 1–19 (2014).

    Article  Google Scholar 

  22. Varma, V., Prange, M., Lamy, F., Merkel, U. & Schulz, M. Solar-forced shifts of the Southern Hemisphere Westerlies during the Holocene. Clim. Past 7, 339–347 (2011).

    Article  Google Scholar 

  23. Voigt, I., Chiessi, C. M., Piola, A. R. & Henrich, R. Holocene changes in Antarctic Intermediate Water flow strength in the Southwest. Palaeogeogr. Palaeoclimatol. Palaeoecol. 463, 60–67 (2016).

    Article  Google Scholar 

  24. Mayewski, P. et al. Ice core and climate reanalysis analogs to predict Antarctic and Southern Hemisphere climate changes. Quat. Sci. Rev. 155, 50–66 (2017).

    Article  Google Scholar 

  25. Otto-Bliesner, B. L. et al. Climate variability and change since 850 CE: an ensemble approach with the Community Earth System Model. Bull. Am. Meteor. Soc. 97, 735–754 (2016).

    Article  Google Scholar 

  26. Landrum, L. L., Holland, M. M., Raphael, M. N. & Polvani, L. M. Stratospheric ozone depletion: an unlikely driver of regional trends in Antarctic sea ice in austral fall in the late twentieth century. Geophys. Res. Lett. 44, 11062–11070 (2017).

    Article  Google Scholar 

  27. Klein, F. et al. Assessing the robustness of Antarctic temperature reconstructions over the past two millennia using pseudoproxy and data assimilation experiments. Clim. Past 15, 661–684 (2019).

    Article  Google Scholar 

  28. Turner, J. The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol. 24, 1–31 (2004).

    Article  Google Scholar 

  29. Yuan, X. ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarct. Sci. 16, 415–425 (2004).

    Article  Google Scholar 

  30. Dätwyler, C. et al. Teleconnections and relationship between the El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode (SAM) in reconstructions and models over the past millennium. Clim. Past 16, 743–756 (2020).

    Article  Google Scholar 

  31. Fogt, R. L., Bromwich, D. H. & Hines, K. M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dyn. 36, 1555–1576 (2011).

    Article  Google Scholar 

  32. Ciasto, L. M., Simpkins, G. R. & England, M. H. Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Clim. 28, 56–65 (2015).

    Article  Google Scholar 

  33. Nicolas, J. P. et al. January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nat. Commun. 8, 15799 (2017).

    Article  Google Scholar 

  34. Delworth, T. L. & Zeng, F. Simulated impact of altered Southern Hemisphere winds on the Atlantic Meridional Overturning Circulation. Geophys. Res. Lett. 35, L20708 (2008).

    Article  Google Scholar 

  35. Meehl, G. A. et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun. 10, 14 (2019).

    Article  Google Scholar 

  36. Fan, T., Deser, C. & Schneider, D. P. Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett. 41, 2419–2426 (2014).

    Article  Google Scholar 

  37. Masson-Delmotte, V. et al. Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim. Dyn. 26, 513–529 (2006).

    Article  Google Scholar 

  38. Turner, J., Harangozo, S. A., Marshall, G. J., King, J. C. & Colwell, S. R. Anomalous atmospheric circulation over the Weddell Sea, Antarctica, during the austral summer of 2001–02 resulting in extreme sea ice conditions. Geophys. Res. Lett. 29, 2160 (2002).

    Article  Google Scholar 

  39. Sugimoto, F. et al. Interannual variability in sea-ice thickness in the pack-ice zone off Lützow-Holm Bay, East Antarctica. Polar Sci. 10, 43–51 (2016).

    Article  Google Scholar 

  40. Thompson, D. W. J. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).

    Article  Google Scholar 

  41. Kostov, Y. et al. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Clim. Dyn. 48, 1595–1609 (2017).

    Article  Google Scholar 

  42. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article  Google Scholar 

  43. Arblaster, J. A. & Meehl, G. A. Contributions of external forcings to Southern Annular Mode trends. J. Clim. 19, 2896–2905 (2006).

    Article  Google Scholar 

  44. Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).

    Article  Google Scholar 

  45. Locarnini, R. A. et al. World Ocean Atlas 2009, Volume 1: Temperature NOAA Atlas NESDIS 68 (ed. Levitus, S.) (US Government Printing Office, 2010).

  46. Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. 42, 641–673 (1995).

    Article  Google Scholar 

  47. Schweitzer, P. N. Monthly Averaged Polar Sea-Ice Concentration (USGS, 1995).

  48. International Hydrographic Organization Limits of Oceans and Seas 3rd edn (Imp. Monégasque, 1953).

  49. Yan, H. et al. A record of the Southern Oscillation index for the past 2,000 years from precipitation proxies. Nat. Geosci. 4, 611–614 (2011).

    Article  Google Scholar 

  50. Abram, N. J. et al. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Change 4, 564–569 (2014).

    Article  Google Scholar 

  51. Escutia, C., Brinkhuis, H., Klaus, A. & Expedition 318 Scientists Expedition 318 Summary https://doi.org/10.2204/iodp.proc.318.101.2011 (2011).

  52. Stickley, C. E. et al. Deglacial ocean and climate seasonality in laminated diatom sediments, Mac.Robertson Shelf, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 227, 290–310 (2005).

    Article  Google Scholar 

  53. Denis, D. et al. Seasonal and sub-seasonal climate changes recorded in laminated diatom ooze sediments, Adélie Land, East Antarctica. Holocene 16, 1137–1147 (2006).

    Article  Google Scholar 

  54. Maddison, E. J. et al. Post-glacial seasonal diatom record of the Mertz Glacier Polynya, East Antarctica. Mar. Micropaleontol. 60, 66–88 (2006).

    Article  Google Scholar 

  55. Ikehara, M. et al. Cruise report of the Hakuho-maru Cruise KH-10-7 (2010).

  56. Ingólfsson, O. et al. Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land. Antarct. Sci. 10, 326–344 (1998).

    Article  Google Scholar 

  57. Costa, E. et al. Solar Forcing and El Niño–Southern Oscillation (ENSO) Influences on Productivity Cycles Interpreted from a Late-Holocene High-Resolution Marine Sediment Record, Adélie Drift, East Antarctic Margin Short Research Paper 306 (USGS and The National Academies, 2007).

  58. Blaauw, M. & Christeny, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

    Article  Google Scholar 

  59. Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    Article  Google Scholar 

  60. Butzin, M., Prange, M. & Lohmann, G. Radiocarbon simulations for the glacial ocean: the effects of wind stress, Southern Ocean sea ice and Heinrich events. Earth Planet. Sci. Lett. 235, 45–61 (2005).

    Article  Google Scholar 

  61. Crosta, X. et al. Last Abundant Appearance Datum of Hemidiscus karstenii driven by climate change. Mar. Micropaleontol. 157, 101861 (2020).

    Article  Google Scholar 

  62. Belt, S. T., Massé, G., Rowland, S. J. & Rohmer, M. Highly branched isoprenoid alcohols and epoxides in the diatom Haslea ostrearia Simonsen. Org. Geochem. 38, 16–27 (2007).

    Article  Google Scholar 

  63. Massé, G. et al. Highly branched isoprenoids as proxies for variable sea ice conditions in the Southern Ocean. Antarct. Sci. 23, 487–498 (2011).

    Article  Google Scholar 

  64. Jensen, S., Renberg, L. & Reutergardh, L. Residue analysis of sediment and sewage sludge for organochlorines in the presence of elemental sulphur. Anal. Chem. 49, 316–318 (1977).

    Article  Google Scholar 

  65. Riis, V. & Babel, W. Removal of sulfur interfering in the analysis of organochlorines by GC-ED. Analyst 124, 1771–1773 (1999).

    Article  Google Scholar 

  66. Cavalieri, D. J., Germain, K. M. S. & Swift, C. T. Reduction of weather effects in the calculation of sea ice concentration with the DMSP SSM/I. J. Glaciol. 41, 455–464 (1995).

    Article  Google Scholar 

  67. Crosta, X., Sturm, A., Armand, L. & Pichon, J.-J. Late Quaternary sea ice history in the Indian sector of the Southern Ocean as recorded by diatom assemblages. Mar. Micropaleontol. 50, 209–223 (2004).

    Article  Google Scholar 

  68. Esper, O. & Gersonde, R. New tools for the reconstruction of Pleistocene Antarctic sea ice. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 260–283 (2014).

    Article  Google Scholar 

  69. Ferry, A. J. et al. First records of winter sea-ice concentration in the southwest Pacific sector of the Southern Ocean. Paleoceanography 30, 1525–1539 (2015).

    Article  Google Scholar 

  70. Schlitzer, R. Interactive analysis and visualization of geoscience data with Ocean Data View. Comput. Geosci. 28, 1211–1218 (2012).

    Article  Google Scholar 

  71. Prell, W. L. The Stability of Low-Latitude Sea-Surface Temperatures: An Evaluation of the CLIMAP Reconstruction with Emphasis on the Positive SST Anomalies Report TR 025 (US Department of Energy, 1985).

  72. Guiot, J. & de Vernal, A. Is spatial autocorrelation introducing biases in the apparent accuracy of paleoclimatic reconstructions? Quat. Sci. Rev. 30, 1965–1972 (2011).

    Article  Google Scholar 

  73. Guiot, J. et al. The climate in western Europe during the last Glacial/Interglacial cycle derived from pollen and insect remains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 103, 73–93 (1993).

    Article  Google Scholar 

  74. Goosse, H. et al. Antarctic temperature changes during the last millennium: evaluation of simulations and reconstructions. Quat. Sci. Rev. 55, 75–90 (2012).

    Article  Google Scholar 

  75. Steiger, N. J., Smerdon, J. E., Cook, E. R. & Cook, B. I. A reconstruction of global hydroclimate and dynamical variables over the Common Era. Sci. Data 5, 1–15 (2018).

    Article  Google Scholar 

  76. Matsikaris, A., Widmann, M. & Jungclaus, J. On-line and off-line data assimilation in palaeoclimatology: a case study. Clim. Past 11, 81–93 (2015).

    Article  Google Scholar 

  77. Hakim, G. J. et al. The last millennium climate reanalysis project: framework and first results. J. Geophys. Res. 121, 6745–6764 (2016).

    Article  Google Scholar 

  78. Steiger, N. J., Steig, E. J., Dee, S. G., Roe, G. H. & Hakim, G. J. Climate reconstruction using data assimilation of water isotope ratios from ice cores. J. Geophys. Res. Atmos. 122, 1545–1568 (2017).

    Article  Google Scholar 

  79. van Leeuwen, P. J. Particle filtering in geophysical systems. Mon. Weather Rev. 137, 4089–4114 (2009).

    Article  Google Scholar 

  80. Dubinkina, S., Goosse, H., Sallaz-Damaz, Y., Crespin, E. & Crucifix, M. Testing a particle filter to reconstruct climate changes over the past centuries. Int. J. Bifurcat. Chaos 21, 3611–3618 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the ERC StG ICEPROXY project (203441), the ANR CLIMICE project, FP7 Past4Future project (243908), the RCN OCTEL project (248776/E10), the Belgian Research Action through Interdisciplinary Networks Mass2Ant project (BR/165/A2/Mass2Ant), the JSPS KAKENHI (grants 23244102 and 17H06318), the Royal Society Te Apārangi Marsden Fund (MFP-VUW1808) and the MBIE NZ Antarctic Science Platform (ANTA1801). It also benefited from the ESF PolarClimate HOLOCLIP project. D.S. benefited from the Blue-Action project (European Union’s Horizon 2020 Research and Innovation Program, grant number: 727852) and the French LEFE-IMAGO programme. Hole U1357B samples and data were provided by the International Ocean Discovery Program (IODP).

Author information

Authors and Affiliations

Authors

Contributions

X.C. designed and coordinated the study and led the writing. J.E. performed the HBI analysis on IODP Hole U1357B. P.C. and L.C.O. performed the diatom analyses on IODP Hole U1357B and COR1GC cores, respectively. Q.D., H.G. and D.S. performed the data assimilation experiments. G.M., X.C. and A.M. coordinated the projects that funded the analyses. C.E., R.M.M. and R.B.D. performed the stratigraphic analysis of IODP Hole U1357B. M.I. gave access to COR1GC sediments and helped develop its age model. All authors commented on the manuscript and contributed to the writing.

Corresponding author

Correspondence to Xavier Crosta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Scaling diatom relative abundances to sea-ice presence.

a, Raw relative abundances of the Open Water Diatom (OWD) group in core DTCI2010 off Adélie Land (black line)15 and resampled relative abundances of the OWD group at a 1 year resolution (red line). b, Resampled relative abundance of the OWD group at a 1 year resolution (red line) compared to the length of the yearly sea-ice free season off Adélie Land between 1979 and 2010 (blue line)15. Grey shaded boxes represent the upper and lower end members used to scale the relative abundances of the OWD group to the yearly open water length. c, The mean upper and lower end members used to calculate the equation to scale the OWD group relative abundances to the length of the open season.

Extended Data Fig. 2 Sea-ice duration off Adélie Land over the last 2000 years.

Length of the sea-ice free season (orange line) calculated by applying the equation presented in Extended Data Fig. 1c to the relative abundances of the OWD group in IODP Hole U1357B and length of the sea-ice duration calculated (blue line) by subtracting the ice-free values from 365 days.

Supplementary information

Supplementary Information

Supplementary Information, Figs. 1–4 and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crosta, X., Etourneau, J., Orme, L.C. et al. Multi-decadal trends in Antarctic sea-ice extent driven by ENSO–SAM over the last 2,000 years. Nat. Geosci. 14, 156–160 (2021). https://doi.org/10.1038/s41561-021-00697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00697-1

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing