Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Increased outburst flood hazard from Lake Palcacocha due to human-induced glacier retreat

Abstract

A potential glacial lake outburst flood from Lake Palcacocha (Cordillera Blanca, Peru) threatens Huaraz, a city of 120,000 people. In 1941, an outburst flood destroyed one-third of the city and caused at least 1,800 fatalities. Since pre-industrial times, Lake Palcacocha has expanded due to the retreat of Palcaraju glacier. Here we used observations and numerical models to evaluate the anthropogenic contribution to the glacier’s retreat and glacial lake outburst flood hazard. We found that the magnitude of human-induced warming equals between 85 and 105% (5–95% confidence interval) of the observed 1 °C warming since 1880 in this region. We conclude that it is virtually certain (>99% probability) that the retreat of Palcaraju glacier to the present day cannot be explained by natural variability alone, and that the retreat by 1941 represented an early impact of anthropogenic greenhouse gas emissions. Our central estimate is that the overall retreat is entirely attributable to the observed temperature trend, and that the resulting change in the geometry of the lake and valley has substantially increased the outburst flood hazard.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: In situ (1939, 1940 and 1970) and satellite (1987 onwards) images showing the evolution of Lake Palcacocha.
Fig. 2: Regional observed and attributable temperature anomalies, and impacts on decadal mean mass-balance profile.
Fig. 3: Mass-balance response to temperature change and modelled and observed retreat of Palcaraju glacier.
Fig. 4: Analysis of the signal-to-noise ratio for Palcaraju glacier.

Data availability

All climate data (observations and reanalysis) that support the findings of this study are publicly available from the KNMI Climate Explorer (https://climexp.knmi.nl/), except the Mayor General FAP Armando Revoredo Iglesias Airport station data, which was downloaded from the Center for Climate and Resilience Research (University of Chile) Climate Explorer (http://explorador.cr2.cl/). All CMIP5 model data used in this study are available in public repositories, for example, https://esgf-node.llnl.gov/search/cmip5/. The model data used here are stored on the Natural Environment Research Council’s (NERC) designated data centre for the atmospheric sciences, BADC (British Atmospheric Data Centre). The GWI data are available from https://www.globalwarmingindex.org/AWI/AWI_AR5_new_spreadsheet.xlsx.

Code availability

Code will be available upon request to the corresponding author.

References

  1. 1.

    Zemp, M. et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 61, 745–762 (2015).

    Google Scholar 

  2. 2.

    Roe, G. H., Baker, M. B. & Herla, F. Centennial glacier retreat as categorical evidence of regional climate change. Nat. Geosci. 10, 95–99 (2017).

    Google Scholar 

  3. 3.

    Hock, R. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 131–202 (WMO, 2019).

  4. 4.

    Dussaillant, I. et al. Two decades of glacier mass loss along the Andes. Nat. Geosci. 12, 802–808 (2019).

    Google Scholar 

  5. 5.

    Jóhannesson, T., Raymond, C. & Waddington, E. Time-scale for adjustment of glaciers to changes in mass balance. J. Glaciol. 35, 355–369 (1989).

    Google Scholar 

  6. 6.

    Roe, G. H. & O’Neal, M. A. The response of glaciers to intrinsic climate variability: observations and models of late-Holocene variations in the Pacific Northwest. J. Glaciol. 55, 839–854 (2009).

    Google Scholar 

  7. 7.

    Oerlemans, J. Holocene glacier fluctuations: is the current rate of retreat exceptional? Ann. Glaciol. 31, 39–44 (2000).

    Google Scholar 

  8. 8.

    Sagredo, E. A. & Lowell, T. V. Climatology of Andean glaciers: a framework to understand glacier response to climate change. Glob. Planet. Change 86–87, 101–109 (2012).

    Google Scholar 

  9. 9.

    Harrison, S. et al. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 12, 1195–1209 (2018).

    Google Scholar 

  10. 10.

    Schwanghart, W., Worni, R., Huggel, C., Stoffel, M. & Korup, O. Uncertainty in the Himalayan energy–water nexus: estimating regional exposure to glacial lake outburst floods. Environ. Res. Lett. 11, 074005 (2016).

    Google Scholar 

  11. 11.

    Emmer, A. & Vilímek, V. Review article: lake and breach hazard assessment for moraine-dammed lakes: an example from the Cordillera Blanca (Peru). Nat. Hazards Earth Syst. Sci. 13, 1551–1565 (2013).

    Google Scholar 

  12. 12.

    Somos-Valenzuela, M. A., Chisolm, R. E., Rivas, D. S., Portocarrero, C. & McKinney, D. C. Modeling a glacial lake outburst flood process chain: the case of Lake Palcacocha and Huaraz, Peru. Hydrol. Earth Syst. Sci. 20, 2519–2543 (2016).

    Google Scholar 

  13. 13.

    Rivas, D. S., Somos-Valenzuela, M. A., Hodges, B. R. & McKinney, D. C. Predicting outflow induced by moraine failure in glacial lakes: the Lake Palcacocha case from an uncertainty perspective. Nat. Hazards Earth Syst. Sci. 15, 1163–1179 (2015).

    Google Scholar 

  14. 14.

    Lliboutry, L., Morales Arnao, B., Pautre, A. & Schneider, B. Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru. I. Historical failures of morainic dams, their causes and prevention. J. Glaciol. 18, 239–254 (1977).

    Google Scholar 

  15. 15.

    Emmer, A. Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru. Quat. Sci. Rev. 177, 220–234 (2017).

    Google Scholar 

  16. 16.

    Portocarrero Rodríguez, C. A. The Glacial Lake Handbook: Reducing Risk from Dangerous Glacial Lakes in the Cordillera Blanca, Peru (USAID, 2014); https://pdf.usaid.gov/pdf_docs/PBAAA087.pdf

  17. 17.

    Drenkhan, F., Huggel, C., Guardamino, L. & Haeberli, W. Managing risks and future options from new lakes in the deglaciating Andes of Peru: the example of the Vilcanota-Urubamba basin. Sci. Total Environ. 665, 465–483 (2019).

    Google Scholar 

  18. 18.

    Vilímek, V., Zapata, M. L., Klimeš, J., Patzelt, Z. & Santillán, N. Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides 2, 107–115 (2005).

    Google Scholar 

  19. 19.

    Frey, H. et al. Multi-source glacial lake outburst flood hazard assessment and mapping for Huaraz, Cordillera Blanca, Peru. Front. Earth Sci. 6, 210 (2018).

    Google Scholar 

  20. 20.

    Rabatel, A. et al. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7, 81–102 (2013).

    Google Scholar 

  21. 21.

    Wegner, S. A. Lo Que El Agua Se Llevó: Consecuencias y Lecciones del Aluvión de Huaraz de 1941 Tecnica 7 (Perú Ministerio del Ambiente, 2014).

  22. 22.

    Huggel, C. et al. Anthropogenic climate change and glacier lake outburst flood risk: local and global drivers and responsibilities for the case of lake Palcacocha, Peru. Nat. Hazards Earth Syst. Sci. 20, 2175–2193 (2020).

    Google Scholar 

  23. 23.

    Cochachin Rapre, A. & Salazar Checa, C. Batimetría de la Laguna Palcacocha (Ministerio de Agricultura y Riego, 2016); https://go.nature.com/3c4jpwC

  24. 24.

    Haustein, K. et al. A limited role for unforced internal variability in twentieth-century warming. J. Clim. 32, 4893–4917 (2019).

    Google Scholar 

  25. 25.

    Haustein, K. et al. A real-time Global Warming Index. Sci. Rep. 7, 15417 (2017).

    Google Scholar 

  26. 26.

    Allen, M. R. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 47–92 (WMO, 2018).

  27. 27.

    Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. Atmos. 117, D08101 (2012).

    Google Scholar 

  28. 28.

    Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

    Google Scholar 

  29. 29.

    Gurgiser, W., Marzeion, B., Nicholson, L., Ortner, M. & Kaser, G. Modeling energy and mass balance of Shallap Glacier, Peru. Cryosphere 7, 1787–1802 (2013).

    Google Scholar 

  30. 30.

    Meier, M. F. & Tangborn, W. V. Net budget and flow of South Cascade Glacier, Washington. J. Glaciol. 5, 547–566 (1965).

    Google Scholar 

  31. 31.

    Kaser, G., Fountain, A. & Jansson, P. A Manual for Monitoring the Mass Balance of Mountain Glaciers with Particular Attention to Low Latitude Characteristics (UNESCO, 2003).

  32. 32.

    Sagredo, E. A., Rupper, S. & Lowell, T. V. Sensitivities of the equilibrium line altitude to temperature and precipitation changes along the Andes. Quat. Res. 81, 355–366 (2014).

    Google Scholar 

  33. 33.

    Malone, A. G. O., Doughty, A. M. & Macayeal, D. R. Interannual climate variability helps define the mean state of glaciers. J. Glaciol. 65, 508–517 (2019).

    Google Scholar 

  34. 34.

    Vuille, M. et al. Climate change and tropical Andean glaciers: past, present and future. Earth Sci. Rev. 89, 79–96 (2008).

    Google Scholar 

  35. 35.

    Kaser, G. Glacier–climate interaction at low latitudes. J. Glaciol. 47, 195–204 (2001).

    Google Scholar 

  36. 36.

    Stuart-Smith, R. F. Melt Rate of Palcaraju Glacier, Cordillera Blanca, Peru: Attribution of Anthropogenic Influence and Proposed Methodology for Calculating Adaptation Cost. FHS dissertation (Univ. Oxford, 2019).

  37. 37.

    Rohde, R. et al. A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinfor. Geostat. 1, https://doi.org/10.4172/2327-4581.1000101 (2013).

  38. 38.

    Poli, P. et al. ERA-20C: an atmospheric reanalysis of the twentieth century. J. Clim. 29, 4083–4097 (2016).

    Google Scholar 

  39. 39.

    Oerlemans, J. Glaciology and Quaternary Geology Vol. 6, 353–371 (Springer, 1989).

  40. 40.

    Medwedeff, W. G. & Roe, G. H. Trends and variability in the global dataset of glacier mass balance. Clim. Dyn. 48, 3085–3097 (2017).

    Google Scholar 

  41. 41.

    Hannart, A., Pearl, J., Otto, F. E. L., Naveau, P. & Ghil, M. Causal counterfactual theory for the attribution of weather and climate-related events. Bull. Am. Meteorol. Soc. 97, 99–110 (2016).

    Google Scholar 

  42. 42.

    Jomelli, V. et al. Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: a review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 269–282 (2009).

    Google Scholar 

  43. 43.

    Georges, C. 20th-century glacier fluctuations in the tropical Cordillera Blanca, Peru. Arct. Antarct. Alp. Res. 36, 100–107 (2004).

    Google Scholar 

  44. 44.

    Kaser, G. & Georges, C. Changes of the equilibrium-line altitude in the tropical Cordillera Blanca, Peru, 1930–50, and their spatial variations. Ann. Glaciol. 24, 344–349 (1997).

    Google Scholar 

  45. 45.

    Raetzo, H., Lateltin, O., Bollinger, D. & Tripet, J. P. Hazard assessment in Switzerland—Codes of Practice for mass movements. Bull. Eng. Geol. Environ. 61, 263–268 (2002).

    Google Scholar 

  46. 46.

    Wang, W., Yao, T., Gao, Y., Yang, X. & Kattel, D. B. A first-order method to identify potentially dangerous glacial lakes in a region of the southeastern Tibetan Plateau. Mt. Res. Dev. 31, 122 (2011).

    Google Scholar 

  47. 47.

    Bolch, T. et al. Identification of potentially dangerous glacial lakes in the northern Tien Shan. Nat. Hazards 59, 1691–1714 (2011).

    Google Scholar 

  48. 48.

    Haeberli, W. Mountain permafrost—research frontiers and a special long-term challenge. Cold Reg. Sci. Technol. 96, 71–76 (2013).

    Google Scholar 

  49. 49.

    Kinzl, H. & Schneider, E. Cordillera Blanca (Perú) (Univ. Wagner, 1950).

  50. 50.

    Schauwecker, S. et al. Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Glob. Planet. Change 119, 85–97 (2014).

    Google Scholar 

  51. 51.

    Mackintosh, A. N., Anderson, B. M. & Pierrehumbert, R. T. Reconstructing climate from glaciers. Annu. Rev. Earth Planet. Sci. 45, 649–680 (2017).

    Google Scholar 

  52. 52.

    Guillod, B. P. et al. weather@home 2: validation of an improved global–regional climate modelling system. Geosci. Model Dev. 10, 1849–1872 (2017).

    Google Scholar 

  53. 53.

    Betts, R. Biogeophysical impacts of land use on present-day climate: near-surface temperature change and radiative forcing. Atmos. Sci. Lett. 2, 39–51 (2001).

    Google Scholar 

  54. 54.

    Hofer, M., Mölg, T., Marzeion, B. & Kaser, G. Empirical–statistical downscaling of reanalysis data to high-resolution air temperature and specific humidity above a glacier surface (Cordillera Blanca, Peru). J. Geophys. Res. 115, D12120 (2010).

    Google Scholar 

  55. 55.

    Legates, D. R. & Willmott, C. J. Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol. 10, 111–127 (1990).

    Google Scholar 

  56. 56.

    Box, G. E. P., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. Time Series Analysis: Forecasting and Control (Wiley, 2008).

  57. 57.

    Sicart, J.-E., Hock, R., Ribstein, P., Litt, M. & Ramirez, E. Analysis of seasonal variations in mass balance and meltwater discharge of the tropical Zongo Glacier by application of a distributed energy balance model. J. Geophys. Res. 116, D13105 (2011).

    Google Scholar 

  58. 58.

    Sicart, J. E., Ribstein, P., Francou, B., Pouyaud, B. & Condom, T. Glacier mass balance of tropical Zongo glacier, Bolivia, comparing hydrological and glaciological methods. Glob. Planet. Change 59, 27–36 (2007).

    Google Scholar 

  59. 59.

    Kaser, G. & Osmaston, H. A. Tropical Glaciers (Cambridge Univ. Press, 2002).

  60. 60.

    Kaser, G., Juen, I., Georges, C., Gómez, J. & Tamayo, W. The impact of glaciers on the runoff and the reconstruction of mass balance history from hydrological data in the tropical Cordillera Bianca, Perú. J. Hydrol. 282, 130–144 (2003).

    Google Scholar 

  61. 61.

    Mölg, T. & Hardy, D. R. Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. J. Geophys. Res. D 109, D16104 (2004).

    Google Scholar 

  62. 62.

    Rupper, S. & Roe, G. H. Glacier changes and regional climate: a mass and energy balance approach. J. Clim. 21, 5384–5401 (2008).

    Google Scholar 

  63. 63.

    Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).

    Google Scholar 

  64. 64.

    Oerlemans, J. An attempt to simulate historic front variations of Nigardsbreen, Norway. Theor. Appl. Climatol. 37, 126–135 (1986).

    Google Scholar 

  65. 65.

    Roe, G. H. & Baker, M. B. Glacier response to climate perturbations: an accurate linear geometric model. J. Glaciol. 60, 670–684 (2014).

    Google Scholar 

  66. 66.

    Roe, G. H. & Baker, M. B. The response of glaciers to climatic persistence. J. Glaciol. 62, 440–450 (2016).

    Google Scholar 

  67. 67.

    Christian, J. E., Koutnik, M. & Roe, G. H. Committed retreat: controls on glacier disequilibrium in a warming climate. J. Glaciol. 64, 675–688 (2018).

    Google Scholar 

  68. 68.

    Cogley, J. G., Kienholz, C., Miles, E. S., Sharp, M. J. & Wyatt, F. GLIMS Glacier Database (NSIDC, 2015); https://doi.org/10.7265/N5V98602

  69. 69.

    Mergili, M. et al. Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru). Hydrol. Earth Syst. Sci. 24, 93–114 (2020).

    Google Scholar 

Download references

Acknowledgements

We thank M. Baker and F. Otto for valuable comments and conversations, and K. Haustein for providing GWI data. R.F.S.-S. acknowledges support from the School of Geography and the Environment, University of Oxford, the Oxford Sustainable Law Programme and the Natural Environment Research Council grant NE/S007474/1, R.F.S.-S. and G.H.R. from NSF PLR-1643299 and S.L. and M.R.A. from The Nature Conservancy-Oxford Martin School Climate Partnership. We gratefully acknowledge support from The Nature Conservancy-Oxford Martin School Climate Partnership and NSF CLD2019647 and the personal computing time given by the CPDN volunteers for the RCM data used to support our findings in this article. We thank the estate of H. Kinzl, whose pioneering observations are shown in Fig. 1, for permission.

Author information

Affiliations

Authors

Contributions

All the authors planned the analyses, which R.F.S.-S. and G.H.R. performed. All the authors contributed to the interpretation of the results and to writing the manuscript.

Corresponding author

Correspondence to R. F. Stuart-Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Stefan Lachowycz, Heike Langenberg, Tom Richardson.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1 and 2, and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stuart-Smith, R.F., Roe, G.H., Li, S. et al. Increased outburst flood hazard from Lake Palcacocha due to human-induced glacier retreat. Nat. Geosci. 14, 85–90 (2021). https://doi.org/10.1038/s41561-021-00686-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing