Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A nutrient control on marine anoxia during the end-Permian mass extinction

Abstract

Oxygen deprivation and hydrogen sulfide toxicity are considered potent kill mechanisms during the mass extinction just before the Permian–Triassic boundary (~251.9 million years ago). However, the mechanism that drove vast stretches of the ocean to an anoxic state is unclear. Here, we present palaeoredox and phosphorus speciation data for a marine bathymetric transect from Svalbard. This shows that, before the extinction, enhanced weathering driven by Siberian Traps volcanism increased the influx of phosphorus, thus enhancing marine primary productivity and oxygen depletion in proximal shelf settings. However, this non-sulfidic state efficiently sequestered phosphorus in the sediment in association with iron minerals, thus restricting the intensity and spatial extent of oxygen-depleted waters. The collapse of vegetation on land immediately before the marine extinction changed the relative weathering influx of iron and sulfate. The resulting transition to euxinic (sulfidic) conditions led to enhanced remobilization of bioavailable phosphorus, initiating a feedback that caused the spread of anoxic waters across large portions of the shelf. This reconciles a lag of >0.3 million years between the onset of enhanced weathering and the development of widespread, but geographically variable, ocean anoxia, with major implications for extinction selectivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Geographical setting of the Festningen section and Deltadalen core.
Fig. 2: Stratigraphic plot of δ13Corg, Fe speciation, Mo/U, Re/Mo and δ34Spy for the Festningen outcrop and Deltadalen core.
Fig. 3: Crossplots of Mo/U covariation.
Fig. 4: Stratigraphic distribution of Ptot/Al, Corg, Corg/Porg and Corg/Preac ratios.
Fig. 5: Conceptual model of the development of water-column redox conditions.

Data availability

P.B.W. (P.B.Wignall@leeds.ac.uk) and S.P. (planke@vbpr.no) should be consulted for material requests of Festningen and Deltadalen, respectively. The raw and processed geochemical data that support the findings of this study are available under Zenodo: https://doi.org/10.5281/zenodo3878094.

Code availability

The R Markdown files to reproduce the data analysis as well as generate the accompanying data figures and the main and supplementary information texts can be found under Zenodo: https://doi.org/10.5281/zenodo.3878094.

References

  1. 1.

    Burgess, S. D., Bowring, S. & Shen, S.-Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).

    Google Scholar 

  2. 2.

    Wignall, P. B. & Twitchett, R. J. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155–1158 (1996).

    Google Scholar 

  3. 3.

    Cao, C. et al. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth Planet. Sci. Lett. 281, 188–201 (2009).

    Google Scholar 

  4. 4.

    Nabbefeld, B. et al. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen. Earth Planet. Sci. Lett. 291, 84–96 (2010).

    Google Scholar 

  5. 5.

    Brennecka, G. A., Herrmann, A. D., Anbar, A. D. & Algeo, T. J. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 108, 17631–17634 (2011).

    Google Scholar 

  6. 6.

    Dustira, A. M. et al. Gradual onset of anoxia across the Permian–Triassic boundary in Svalbard, Norway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 303–313 (2013).

    Google Scholar 

  7. 7.

    Schobben, M. et al. Flourishing ocean drives the end-Permian marine mass extinction. Proc. Natl Acad. Sci. USA 112, 10298–10303 (2015).

    Google Scholar 

  8. 8.

    Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in Earth history. Proc. Natl Acad. Sci. USA 113, E6325–E6334 (2016).

    Google Scholar 

  9. 9.

    Kiehl, J. T. & Shields, C. A. Climate simulation of the latest Permian: implications for mass extinction. Geology 33, 757–760 (2005).

    Google Scholar 

  10. 10.

    Hotinski, R. M., Bice, K. L., Kump, L. R., Najjar, R. G. & Arthur, M. A. Ocean stagnation and end-Permian anoxia. Geology 29, 7–10 (2001).

    Google Scholar 

  11. 11.

    Meyer, K., Kump, L. & Ridgwell, A. Biogeochemical controls on photic-zone euxinia during the end-Permian mass extinction. Geology 36, 747–750 (2008).

    Google Scholar 

  12. 12.

    Algeo, T. J. & Twitchett, R. J. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology 38, 1023–1026 (2010).

    Google Scholar 

  13. 13.

    Shen, J. et al. Marine productivity changes during the end-Permian crisis and Early Triassic recovery. Earth-Sci. Rev. 149, 136–162 (2015).

    Google Scholar 

  14. 14.

    Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).

    Google Scholar 

  15. 15.

    Sephton, M. A. et al. Catastrophic soil erosion during the end-Permian biotic crisis. Geology 33, 941–944 (2005).

    Google Scholar 

  16. 16.

    Sun, H. et al. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary. Proc. Natl Acad. Sci. USA 115, 3782–3787 (2018).

    Google Scholar 

  17. 17.

    Visscher, H. et al. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl Acad. Sci. USA 101, 12952–12956 (2004).

    Google Scholar 

  18. 18.

    Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).

    Google Scholar 

  19. 19.

    Ward, P. D., Montgomery, D. R. & Smith, R. Altered river morphology in South Africa related to the Permian–Triassic extinction. Science 289, 1740–1743 (2000).

    Google Scholar 

  20. 20.

    Algeo, T. et al. Evidence for a diachronous late Permian marine crisis from the Canadian Arctic region. Geol. Soc. Am. Bull. 124, 1424–1448 (2012).

    Google Scholar 

  21. 21.

    Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).

    Google Scholar 

  22. 22.

    Krom, M. D. & Berner, R. A. The diagenesis of phosphorus in a nearshore marine sediment. Geochim. Cosmochim. Acta 45, 207–216 (1981).

    Google Scholar 

  23. 23.

    Slomp, C. P., Van Der Gaast, S. J. & Van Raaphorst, W. Phosphorus binding by poorly crystalline iron oxides in North Sea sediments. Mar. Chem. 52, 55–73 (1996).

    Google Scholar 

  24. 24.

    Schenau, S. J. & De Lange, G. J. A novel chemical method to quantify fish debris in marine sediments. Limnol. Oceanogr. 45, 963–971 (2000).

    Google Scholar 

  25. 25.

    Ruttenberg, K. C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 37, 1460–1482 (1992).

    Google Scholar 

  26. 26.

    Egger, M., Jilbert, T., Behrends, T., Rivard, C. & Slomp, C. P. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments. Geochim. Cosmochim. Acta 169, 217–235 (2015).

    Google Scholar 

  27. 27.

    Cappellen, P. V. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).

    Google Scholar 

  28. 28.

    Algeo, T. J. & Ingall, E. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 256, 130–155 (2007).

    Google Scholar 

  29. 29.

    Harland, W. The Geology of Svalbard (Geological Society, 1997).

  30. 30.

    Blomeier, D., Dustira, A. M., Forke, H. & Scheibner, C. Facies analysis and depositional environments of a storm-dominated, temperate to cold, mixed siliceous–carbonate ramp: the Permian Kapp Starostin Formation in NE Svalbard. Nor. J. Geol. 93, 75–93 (2013).

    Google Scholar 

  31. 31.

    Zuchuat, V. et al. A new high-resolution stratigraphic and palaeoenvironmental record spanning the end-Permian mass extinction and its aftermath in central Spitsbergen, Svalbard. Palaeogeogr. Palaeoclimatol. Palaeoecol. 554, 109732 (2020).

  32. 32.

    Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).

    Google Scholar 

  33. 33.

    Algeo, T. & Tribovillard, N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chem. Geol. 268, 211–225 (2009).

    Google Scholar 

  34. 34.

    Raiswell, R. & Canfield, D. E. Sources of iron for pyrite formation in marine sediments. Am. J. Sci. 298, 219–245 (1998).

    Google Scholar 

  35. 35.

    Poulton, S. W. & Raiswell, R. The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805 (2002).

    Google Scholar 

  36. 36.

    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Google Scholar 

  37. 37.

    Lyons, T. W. & Severmann, S. A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 70, 5698–5722 (2006).

    Google Scholar 

  38. 38.

    Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3, 486–490 (2010).

    Google Scholar 

  39. 39.

    Doyle, K. A., Poulton, S. W., Newton, R. J., Podkovyrov, V. N. & Bekker, A. Shallow water anoxia in the Mesoproterozoic ocean: evidence from the Bashkir Meganticlinorium, Southern Urals. Precambrian Res. 317, 196–210 (2018).

    Google Scholar 

  40. 40.

    Kendall, B. et al. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 3, 647–652 (2010).

    Google Scholar 

  41. 41.

    Chafetz, H. S. & Reid, A. Syndepositional shallow-water precipitation of glauconitic minerals. Sediment. Geol. 136, 29–42 (2000).

    Google Scholar 

  42. 42.

    Peters, S. E. & Gaines, R. R. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature 484, 363–366 (2012).

    Google Scholar 

  43. 43.

    Manwell, C. Oxygen equilibrium of brachiopod Lingula hemerythrin. Science 132, 550–551 (1960).

    Google Scholar 

  44. 44.

    Peng, Y., Shi, G. R., Gao, Y., He, W. & Shen, S. How and why did the Lingulidae (Brachiopoda) not only survive the end-Permian mass extinction but also thrive in its aftermath? Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 118–131 (2007).

    Google Scholar 

  45. 45.

    Scott, C. & Lyons, T. W. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chem. Geol. 324-325, 19–27 (2012).

    Google Scholar 

  46. 46.

    Lyons, T. W. Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea. Geochim. Cosmochim. Acta 61, 3367–3382 (1997).

    Google Scholar 

  47. 47.

    Shen, Y., Canfield, D. E. & Knoll, A. H. Middle proterozoic ocean chemistry: evidence from the McArthur Basin, Northern Australia. Am. J. Sci. 302, 81–109 (2002).

    Google Scholar 

  48. 48.

    Borgnino, L., Avena, M. & De Pauli, C. Synthesis and characterization of Fe(III)-montmorillonites for phosphate adsorption. Colloids Surf. A 341, 46–52 (2009).

    Google Scholar 

  49. 49.

    Foster, W. J., Danise, S. & Twitchett, R. J. A silicified Early Triassic marine assemblage from Svalbard. J. Syst. Palaeontol. 15, 851–877 (2017).

    Google Scholar 

  50. 50.

    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    Google Scholar 

  51. 51.

    Wedepohl, K. H. in Metals and Their Compounds in the Environment (ed. Merian, E.) 3–17 (Verlag Chemie, 1991).

  52. 52.

    Thompson, J. et al. Development of a modified SEDEX phosphorus speciation method for ancient rocks and modern iron-rich sediments. Chem. Geol. 524, 383–393 (2019).

    Google Scholar 

  53. 53.

    Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).

    Google Scholar 

Download references

Acknowledgements

M.S. was funded by a DFG Research Fellowship (SCHO 1689/1–1). S.W.P. acknowledges support from a Royal Society Wolfson Research Merit Award and a Leverhulme Research Fellowship. D.P.G.B. acknowledges funding from the Natural Environment Research Council (NE/J01799X/1) as do P.B.W. and R.J.N. (NE/P013724/1). H.H.S. and S.P. acknowledge support from the Norwegian Research Council by Centres of Excellence funding to CEED (project number 223272), and Lundin Petroleum, Arctic Drilling AS and Store Norske Spitsbergen Kulkompani for funding, drilling and support related to the Deltadalen core.

Author information

Affiliations

Authors

Contributions

The study was designed by M.S., R.J.N., P.B.W. and S.W.P. Samples were collected by V.Z., A.R.N.S., H.H.S., S.P., P.B.W. and D.P.G.B. Palaeontological data acquisition was performed by W.J.F., M.S., P.B.W. and D.P.G.B. Geochemical analyses were performed by M.S., F.M. and R.J.N. M.S. and S.W.P. interpreted data. M.S. led the writing of the manuscript with contributions from all co-authors.

Corresponding author

Correspondence to Martin Schobben.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: James Super.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7; Tables 1–3; geological setting; lithostratigraphy and facies description; chronology; materials; data processing, statistics and visualization; methods; results and discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schobben, M., Foster, W.J., Sleveland, A.R.N. et al. A nutrient control on marine anoxia during the end-Permian mass extinction. Nat. Geosci. 13, 640–646 (2020). https://doi.org/10.1038/s41561-020-0622-1

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing