Distinct formation history for deep-mantle domains reflected in geochemical differences


The Earth’s mantle is currently divided into the African and Pacific domains, separated by the circum-Pacific subduction girdle, and each domain features a large low shear-wave velocity province (LLSVP) in the lower mantle. However, it remains controversial as to whether the LLSVPs have been stationary through time or dynamic, changing in response to changes in global subduction geometry. Here we compile radiogenic isotope data on plume-induced basalts from ocean islands and oceanic plateaus above the two LLSVPs that show distinct lead, neodymium and strontium isotopic compositions for the two mantle domains. The African domain shows enrichment by subducted continental material during the assembly and breakup of the supercontinent Pangaea, whereas no such feature is found in the Pacific domain. This deep-mantle geochemical dichotomy reflects the different evolutionary histories of the two domains during the Rodinia and Pangaea supercontinent cycles and thus supports a dynamic relationship between plate tectonics and deep-mantle structures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Global maps of the LLSVPs.
Fig. 2: Isotopic data of OIBs and OPBs derived from the deep source of the African and the Pacific mantle domains.
Fig. 3: Configurations of the continental masses and African and Pacific mantle domains for the present day, 200 Ma, 400 Ma and 600 Ma.

Data availability

The data supporting the findings of this study are available on the Georoc database (http://georoc.mpch-mainz.gwdg.de/georoc/).

Code availability

The Matlab files used for statistical distribution of the isotopic data are available from the corresponding author upon request.


  1. 1.

    Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Google Scholar 

  2. 2.

    Dziewonski, A. M., Lekic, V. & Romanowicz, B. A. Mantle anchor structure: an argument for bottom up tectonics. Earth Planet. Sci. Lett. 299, 69–79 (2010).

    Google Scholar 

  3. 3.

    Li, Z.-X. & Zhong, S. Supercontinent–superplume coupling, true polar wander and plume mobility: plate dominance in whole-mantle tectonics. Phys. Earth Planet. Inter. 176, 143–156 (2009).

    Google Scholar 

  4. 4.

    Anderson, D. L. Superplumes or supercontinents? Geology 22, 39–42 (1994).

    Google Scholar 

  5. 5.

    Bunge, H.-P. et al. Time scales and heterogeneous structure in geodynamic Earth models. Science 280, 91–95 (1998).

    Google Scholar 

  6. 6.

    McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

    Google Scholar 

  7. 7.

    Li, Z. X. et al. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res. 160, 179–210 (2008).

    Google Scholar 

  8. 8.

    Mitchell, R. N., Kilian, T. M. & Evans, D. A. D. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. Nature 482, 208–211 (2012).

    Google Scholar 

  9. 9.

    Evans, D. A. True polar wander, a supercontinental legacy. Earth Planet. Sci. Lett. 157, 1–8 (1998).

    Google Scholar 

  10. 10.

    Gamal El Dien, H., Doucet, L. S., Li, Z.-X., Cox, M. C. & Mitchell, R. N. Global geochemical fingerprinting of plume intensity suggests coupling with the supercontinent cycle. Nat. Commun. 10, 5270 (2019).

    Google Scholar 

  11. 11.

    Doucet, L. S. et al. Coupled supercontinent–mantle plume events evidenced by oceanic plume record. Geology 48, 159–163 (2020).

    Google Scholar 

  12. 12.

    Jackson, M. G. et al. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature 466, 853–856 (2010).

    Google Scholar 

  13. 13.

    White, W. M. Isotopes, DUPAL, LLSVPs, and anekantavada. Chem. Geol. 419, 10–28 (2015).

    Google Scholar 

  14. 14.

    Class, C. & Goldstein, S. L. Evolution of helium isotopes in the Earth’s mantle. Nature 436, 1107–1112 (2005).

    Google Scholar 

  15. 15.

    Dupré, B. & Allègre, C. J. Pb–Sr isotope variations in Indian Ocean basalts and mixing phenomena. Nature 303, 142–146 (1983).

    Google Scholar 

  16. 16.

    Hart, S. R. A large-scale anomaly in the Southern Hemisphere mantle. Nature 309, 753–757 (1984).

    Google Scholar 

  17. 17.

    Staudigel, H. et al. The longevity of the South Pacific isotopic and thermal anomaly. Earth Planet. Sci. Lett. 102, 24–44 (1991).

    Google Scholar 

  18. 18.

    Castillo, P. The Dupal anomaly as a trace of the upwelling lower mantle. Nature 336, 667–670 (1988).

    Google Scholar 

  19. 19.

    Jackson, M., Becker, T. & Konter, J. Geochemistry and distribution of recycled domains in the mantle inferred from Nd and Pb isotopes in oceanic hot spots: implications for storage in the large low shear wave velocity provinces. Geochem. Geophys. Geosyst. 19, 3496–3519 (2018).

    Google Scholar 

  20. 20.

    French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Google Scholar 

  21. 21.

    Torsvik, T. H., Steinberger, B., Ashwal, L. D., Doubrovine, P. V. & Trønnes, R. G. Earth evolution and dynamics—a tribute to Kevin Burke. Can. J. Earth Sci. 53, 1073–1087 (2016).

    Google Scholar 

  22. 22.

    Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P. & Dziewonski, A. M. Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313, 541–545 (1985).

    Google Scholar 

  23. 23.

    Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci. Lett. 205, 295–308 (2003).

    Google Scholar 

  24. 24.

    Jackson, M. G., Konter, J. G. & Becker, T. W. Primordial helium entrained by the hottest mantle plumes. Nature 542, 340–343 (2017).

    Google Scholar 

  25. 25.

    Becker, T. W. & Boschi, L. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst. 3, 1003 (2002).

    Google Scholar 

  26. 26.

    Jackson, M. G. et al. The return of subducted continental crust in Samoan lavas. Nature 448, 684–687 (2007).

    Google Scholar 

  27. 27.

    Boschi, L., Becker, T. & Steinberger, B. Mantle plumes: dynamic models and seismic images. Geochem. Geophys. Geosyst. 8, Q10006 (2007).

    Google Scholar 

  28. 28.

    Druken, K., Kincaid, C., Griffiths, R., Stegman, D. & Hart, S. Plume–slab interaction: the Samoa–Tonga system. Phys. Earth Planet. Inter. 232, 1–14 (2014).

    Google Scholar 

  29. 29.

    Cottaar, S. & Lekic, V. Morphology of seismically slow lower-mantle structures. Geophys. J. Int. 207, 1122–1136 (2016).

    Google Scholar 

  30. 30.

    Bebout, G. E., Bebout, A. E. & Graham, C. M. Cycling of B, Li, and LILE (K, Cs, Rb, Ba, Sr) into subduction zones: SIMS evidence from micas in high-P/T metasedimentary rocks. Chem. Geol. 239, 284–304 (2007).

    Google Scholar 

  31. 31.

    Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).

    Google Scholar 

  32. 32.

    Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

    Google Scholar 

  33. 33.

    Rizo, H. et al. 182W evidence for core-mantle interaction in the source of mantle plumes. Geochemical Perspect. Lett. 11, 6–11 (2019).

    Google Scholar 

  34. 34.

    Wang, X.-C. et al. Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: implications for potential linkages between plume and plate tectonics. Earth Planet. Sci. Lett. 377-378, 248–259 (2013).

    Google Scholar 

  35. 35.

    Li, Z. X. et al. Decoding Earth’s rhythms: modulation of supercontinent cycles by longer superocean episodes. Precambrian Res. 323, 1–5 (2019).

    Google Scholar 

  36. 36.

    Willbold, M. & Stracke, A. Formation of enriched mantle components by recycling of upper and lower continental crust. Chem. Geol. 276, 188–197 (2010).

    Google Scholar 

  37. 37.

    Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. A failure to reject: testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. Geochem. Geophys. Geosyst. 17, 1130–1163 (2016).

    Google Scholar 

  38. 38.

    Zindler, A. & Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet Sci. 14, 493–571 (1986).

    Google Scholar 

  39. 39.

    Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146, 226–250 (2016).

    Google Scholar 

  40. 40.

    Le Bas, M. IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol. 41, 1467–1470 (2000).

    Google Scholar 

  41. 41.

    Olierook, H. K., Jiang, Q., Jourdan, F. & Chiaradia, M. Greater Kerguelen large igneous province reveals no role for Kerguelen mantle plume in the continental breakup of eastern Gondwana. Earth Planet. Sci. Lett. 511, 244–255 (2019).

    Google Scholar 

  42. 42.

    Botev, Z. I., Grotowski, J. F. & Kroese, D. P. Kernel density estimation via diffusion. Ann. Stat. 38, 2916–2957 (2010).

    Google Scholar 

  43. 43.

    Spencer, C. J. et al. Deconvolving the pre-Himalayan Indian margin—tales of crustal growth and destruction. Geosci. Front. 10, 863–872 (2019).

    Google Scholar 

  44. 44.

    Asmerom, Y. & Jacobsen, S. B. The Pb isotopic evolution of the Earth: inferences from river water suspended loads. Earth Planet. Sci. Lett. 115, 245–256 (1993).

    Google Scholar 

  45. 45.

    Simmons, N. A., Forte, A. M., Boschi, L. & Grand, S. P. GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res. Solid Earth 115 (2010).

  46. 46.

    Houser, C., Masters, G., Shearer, P. & Laske, G. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int. 174, 195–212 (2008).

    Google Scholar 

  47. 47.

    Ritsema, J., Deuss, A. A., Van Heijst, H. & Woodhouse, J. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Google Scholar 

  48. 48.

    Kustowski, B., Ekström, G. & Dziewoński, A. Anisotropic shear‐wave velocity structure of the Earth’s mantle: a global model. J. Geophys. Res. Solid Earth 113 (2008).

  49. 49.

    Mégnin, C. & Romanowicz, B. The three‐dimensional shear velocity structure of the mantle from the inversion of body, surface and higher‐mode waveforms. Geophys. J. Int. 143, 709–728 (2000).

    Google Scholar 

  50. 50.

    Müller, R. D., Royer, J.-Y. & Lawver, L. A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology 21, 275–278 (1993).

    Google Scholar 

  51. 51.

    Gibson, S., Thompson, R. & Day, J. Timescales and mechanisms of plume–lithosphere interactions: 40Ar/39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná–Etendeka large igneous province. Earth Planet. Sci. Lett. 251, 1–17 (2006).

    Google Scholar 

  52. 52.

    Gibson, S., Thompson, R., Leonardos, O., Dickin, A. & Mitchell, J. The limited extent of plume–lithosphere interactions during continental flood-basalt genesis: geochemical evidence from Cretaceous magmatism in southern Brazil. Contrib. Mineral. Petrol. 137, 147–169 (1999).

    Google Scholar 

  53. 53.

    Johansson, L., Zahirovic, S. & Müller, R. D. The interplay between the eruption and weathering of large igneous provinces and the deep‐time carbon cycle. Geophys. Res. Lett. 45, 5380–5389 (2018).

    Google Scholar 

  54. 54.

    Hilton, D., Barling, J. & Wheller, G. Effect of shallow-level contamination on the helium isotope systematics of ocean-island lavas. Nature 373, 330–333 (1995).

    Google Scholar 

  55. 55.

    Coffin, M. F. et al. Kerguelen hotspot magma output since 130 Ma. J. Petrol. 43, 1121–1137 (2002).

    Google Scholar 

  56. 56.

    Doucet, S. et al. Primitive neon and helium isotopic compositions of high-MgO basalts from the Kerguelen Archipelago, Indian Ocean. Earth Planet Sci. Lett. 241, 65–79 (2006).

    Google Scholar 

  57. 57.

    Storey, B. C. The role of mantle plumes in continental breakup: case histories from Gondwanaland. Nature 377, 301–308 (1995).

    Google Scholar 

  58. 58.

    Graham, D., Lupton, J., Albarède, F. & Condomines, M. Extreme temporal homogeneity of helium isotopes at Piton de la Fournaise, Réunion Island. Nature 347, 545–548 (1990).

    Google Scholar 

  59. 59.

    Stroncik, N., Niedermann, S., Schnabel, E. & Erzinger, J. Determining the geochemical structure of the mantle from surface isotope distribution patterns? Insights from Ne and He isotopes and abundance ratios. AGU Fall Meeting 2011 abstr. V51B-2519 (AGU, 2011).

  60. 60.

    Poreda, R., Schilling, J.-G. & Craig, H. Helium isotope ratios in Easter microplate basalts. Earth Planet. Sci. Lett. 119, 319–329 (1993).

    Google Scholar 

  61. 61.

    Head, J. W. & Coffin, M. F. in Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.) 411–438 (AGU, 1997).

  62. 62.

    Kurz, M. D., Jenkins, W. J., Hart, S. R. & Clague, D. Helium isotopic variations in volcanic rocks from Loihi Seamount and the Island of Hawaii. Earth Planet. Sci. Lett. 66, 388–406 (1983).

    Google Scholar 

  63. 63.

    Kurz, M., Jenkins, W. & Hart, S. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297, 43–47 (1982).

    Google Scholar 

  64. 64.

    Olierook, H. K., Jourdan, F. & Merle, R. E. Age of the Barremian–Aptian boundary and onset of the Cretaceous Normal Superchron. Earth Sci. Rev. 197, 102906 (2019).

  65. 65.

    Graham, D. W. et al. Helium isotope composition of the early Iceland mantle plume inferred from the Tertiary picrites of West Greenland. Earth Planet Sci. Lett. 160, 241–255 (1998).

    Google Scholar 

  66. 66.

    Storey, M., Duncan, R. A. & Tegner, C. Timing and duration of volcanism in the North Atlantic Igneous Province: implications for geodynamics and links to the Iceland hotspot. Chem. Geol. 241, 264–281 (2007).

    Google Scholar 

  67. 67.

    Lawver, L. A. & Müller, R. D. Iceland hotspot track. Geology 22, 311–314 (1994).

    Google Scholar 

  68. 68.

    Torsvik, T. H. et al. Continental crust beneath southeast Iceland. Proc. Natl Acad. Sci. USA 112, E1818–E1827 (2015).

    Google Scholar 

  69. 69.

    Werner, R. et al. Drowned 14-my-old Galápagos archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geology 27, 499–502 (1999).

    Google Scholar 

  70. 70.

    Jackson, M. G., Kurz, M. D. & Hart, S. R. Helium and neon isotopes in phenocrysts from Samoan lavas: evidence for heterogeneity in the terrestrial high 3He/4He mantle. Earth Planet. Sci. Lett. 287, 519–528 (2009).

    Google Scholar 

  71. 71.

    Hoernle, K. et al. Existence of complex spatial zonation in the Galápagos plume. Geology 28, 435–438 (2000).

    Google Scholar 

  72. 72.

    Adam, C., Vidal, V. & Escartín, J. 80-Myr history of buoyancy and volcanic fluxes along the trails of the Walvis and St. Helena hotspots (South Atlantic). Earth Planet. Sci. Lett. 261, 432–442 (2007).

    Google Scholar 

  73. 73.

    Graham, D. W., Humphris, S. E., Jenkins, W. J. & Kurz, M. D. Helium isotope geochemistry of some volcanic rocks from Saint Helena. Earth Planet. Sci. Lett. 110, 121–131 (1992).

    Google Scholar 

  74. 74.

    Merle, R. E., Jourdan, F., Chiaradia, M., Olierook, H. K. & Manatschal, G. Origin of widespread Cretaceous alkaline magmatism in the Central Atlantic: a single melting anomaly? Lithos 342, 480–498 (2019).

    Google Scholar 

  75. 75.

    Geldmacher, J., Hoernle, K., van den Bogaard, P., Duggen, S. & Werner, R. New age and geochemical data from seamounts in the Canary and Madeira volcanic provinces: a contribution to the “Great Plume Debate”. AGU Fall Meeting 2004 abstr. V51B 0562 (AGU, 2004).

  76. 76.

    Moreira, M., Doucelance, R., Kurz, M. D., Dupré, B. & Allègre, C. J. Helium and lead isotope geochemistry of the Azores Archipelago. Earth Planet. Sci. Lett. 169, 189–205 (1999).

    Google Scholar 

  77. 77.

    Doucelance, R., Escrig, S., Moreira, M., Gariepy, C. & Kurz, M. D. Pb–Sr–He isotope and trace element geochemistry of the Cape Verde Archipelago. Geochim. Cosmochim. Acta 67, 3717–3733 (2003).

    Google Scholar 

  78. 78.

    Day, J. M. & Hilton, D. R. Origin of 3He/4He ratios in HIMU-type basalts constrained from Canary Island lavas. Earth Planet. Sci. Lett. 305, 226–234 (2011).

    Google Scholar 

  79. 79.

    Clouard, V. & Bonneville, A. How many Pacific hotspots are fed by deep-mantle plumes? Geology 29, 695–698 (2001).

    Google Scholar 

  80. 80.

    Castillo, P., Scarsi, P. & Craig, H. He, Sr, Nd, and Pb isotopic constraints on the origin of the Marquesas and other linear volcanic chains. Chem. Geol. 240, 205–221 (2007).

    Google Scholar 

  81. 81.

    Hanyu, T. & Kaneoka, I. The uniform and low 3He/4He ratios of HIMU basalts as evidence for their origin as recycled materials. Nature 390, 273–276 (1997).

    Google Scholar 

  82. 82.

    Garapić, G. et al. A radiogenic isotopic (He–Sr–Nd–Pb–Os) study of lavas from the Pitcairn hotspot: implications for the origin of EM-1 (enriched mantle 1). Lithos 228, 1–11 (2015).

    Google Scholar 

  83. 83.

    Moreira, M. & Allègre, C. Helium isotopes on the Macdonald seamount (Austral chain): constraints on the origin of the superswell. C. R. Geosci. 336, 983–990 (2004).

    Google Scholar 

Download references


This work was supported by the Australian Research Council Laureate Fellowship grant to Z.-X.L. (FL150100133). This is a contribution to IGCP 648. We thank N. Flament and R. Carlson for their constructive comments on earlier versions of the manuscript.

Author information




All authors helped with the writing and editing of the manuscript. L.S.D., the primary author, is the main contributor who designed the study, collected the data and drafted the paper. Z.-X.L. conceptualized the initial idea, clarified the relevant concepts, helped to design Fig. 3 and worked with L.S.D. on the writing of the paper. H.G. helped to design the data selection criteria and filtered the database. A.P. helped with the design of the selection criteria. J.B.M. helped to clarify the concepts and validated the approach. W.J.C. provided constraints on the timing of crustal contamination during the assembly of Pangea. N.M. helped with the interpretation of the isotopic compositions of both the African and Pacific domain basalts. H.K.H.O. helped with the data filtering of the Kerguelen samples and the grading of the hotspots and oceanic plateaus. C.J.S. designed the Matlab scripts and performed the statitiscal analysis. R.N.M. helped to clarify some of the concepts.

Corresponding author

Correspondence to Luc S. Doucet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Rebecca Neely.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Isotopic data of Oceanic Island Basalts (OIBs) and Oceanic Plateau Basalts (OPBs) for the African (orange) and the Pacific (blue) mantle domains.

The isotope compositions are back-calculated to initial compositions at the time of crystallization for Kerguelen and Ontong Java oceanic plateau basalts. (a, b) 206Pb/204Pb vs. 208Pb/204Pb vs. (c, d) 207Pb/204Pb vs. 206Pb/204Pb, and (e, f) 143Nd/144Nd vs.87Sr/86Sr. The contour lines represent percentiles of the kernel density estimation (see Methods). Also shown is the Northern Hemisphere Reference Line (NHRL)16 that defines the DUPAL anomaly (above the NHRL).

Extended Data Fig. 2 Isotopic data of Oceanic Island Basalts (OIBs) and Oceanic Plateau Basalts (OPBs) for the African (orange) and the Pacific (blue) mantle Domains, axis scales similar to Fig. 2.

The isotope compositions are back-calculated to initial compositions at the time of crystallization for Kerguelen and Ontong Java oceanic plateau basalts. (a, b) 206Pb/204Pb vs. 208Pb/204Pb vs. (c, d) 207Pb/204Pb vs. 206Pb/204Pb, and (e, f) 143Nd/144Nd vs.87Sr/86Sr. The contour lines represent percentiles of the kernel density estimation (see Methods). Also shown is the Northern Hemisphere Reference Line (NHRL)16 that defines the DUPAL anomaly (above the NHRL).

Extended Data Fig. 3 List of deep sourced vs. shallower sourced ocean islands and oceanic plateaus from the African and Pacific mantle domain.

Scores for the eighteen major OIBs and OPBs with respect to the four criteria are used to determine their deep vs. shallow origins. For details see Methods.

Supplementary information

Supplementary Data 1

Isotopic compositions and geographic coordinates of ocean islands and oceanic plateau basalts from the African domain.

Supplementary Data 2

Isotopic compositions and geographic coordinates of ocean islands and oceanic plateau basalts from the Pacific domain.

Supplementary Data 3

Isotopic modelling reproducing the composition of the basalts with deep-mantle source from the African domain.

Supplementary Data 4

Matlab scripts used to produce the kernel density contours in Fig. 2 and Extended Data Figs. 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doucet, L.S., Li, Z., Gamal El Dien, H. et al. Distinct formation history for deep-mantle domains reflected in geochemical differences. Nat. Geosci. 13, 511–515 (2020). https://doi.org/10.1038/s41561-020-0599-9

Download citation