Evidence for a hot start and early ocean formation on Pluto

Abstract

Pluto is thought to possess a present-day ocean beneath a thick ice shell. It has generally been assumed that Pluto accreted from cold material and then later developed its ocean due to warming from radioactive decay; in this ‘cold start’ scenario, the ice shell would have experienced early compression and more recent extension. Here we compare thermal model simulations with geological observations from the New Horizons mission to suggest that Pluto was instead relatively hot when it formed, with an early subsurface ocean. Such a ‘hot start’ Pluto produces an early, rapid phase of extension, followed by a more prolonged extensional phase, which totals ~0.5% linear strain over the last 3.5 Gyr. The amount of second-phase extension is consistent with that inferred from extensional faults on Pluto; we suggest that an enigmatic ridge–trough system recently identified on Pluto is indicative of early extensional tectonics. A hot initial start can be achieved with the gravitational energy released during accretion if the final stage of Pluto’s accretion is rapid (<30 kyr). A fast final stage of growth is in agreement with models of the formation of Kuiper belt objects via gravitational collapse followed by pebble accretion, and implies that early oceans may have been common in the interiors of large Kuiper belt objects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Representative thermal evolution models for Pluto.
Fig. 2: Stereo topography on Pluto.

Data availability

The topographic data used in this work is available at the PDS Cartography and Imaging Sciences Node (IMG) Annex https://go.nature/2MK0Csd.

Code availability

The model used in this work is freely available at https://github.com/CarverB/IceTherm_HotStart.

References

  1. 1.

    Stern, S. A. et al. The Pluto system: initial results from its exploration by New Horizon. Science 350, aad1815 (2015).

    Google Scholar 

  2. 2.

    Moore, J. M. et al. The geology of Pluto and Charon through the eyes of New Horizons. Science 351, 1284–1293 (2016).

    Google Scholar 

  3. 3.

    White, O. L. et al. Geological mapping of Sputnik Planitia on Pluto. Icarus 287, 261–286 (2017).

    Google Scholar 

  4. 4.

    Stern, S. A., Grundy, W. M., McKinnon, W. B., Weaver, H. A. & Young, L. A. The Pluto system after New Horizons. Annu. Rev. Astron. Astrophys. 56, 357–392 (2018).

    Google Scholar 

  5. 5.

    Nimmo, F. et al. Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540, 94–96 (2016).

    Google Scholar 

  6. 6.

    Robuchon, G. & Nimmo, F. Thermal evolution of Pluto and implications for surface tectonics and a subsurface ocean. Icarus 216, 426–439 (2011).

    Google Scholar 

  7. 7.

    Hammond, N. P., Barr, A. C. & Parmentier, E. M. Recent tectonic activity on Pluto driven by phase changes in the ice shell. Geophys. Res. Lett. 43, 6775–6782 (2016).

    Google Scholar 

  8. 8.

    Bierson, C. J., Nimmo, F. & McKinnon, W. B. Implications of the observed Pluto–Charon density contrast. Icarus 309, 207–219 (2018).

    Google Scholar 

  9. 9.

    Bhatia, G. K. & Sahijpal, S. Thermal evolution of trans-Neptunian objects, icy satellites, and minor icy planets in the early solar system. Meteorit. Planet. Sci. 52, 2470–2490 (2017).

    Google Scholar 

  10. 10.

    Canup, R. M., Kratter, K. M. & Neveu, M. in The Pluto System After New Horizons (eds Stern, S. A. et al.) Ch. 22 (Univ. of Arizona Press, 2020).

  11. 11.

    Kimura, J. & Kamata, S. Stability of the subsurface ocean of Pluto. Planet. Space Sci. 181, 104828 (2020).

    Google Scholar 

  12. 12.

    Nimmo, F. & Spencer, J. R. Powering tritonas recent geological activity by obliquity tides: implications for Pluto geology. Icarus 246, 2–10 (2015).

    Google Scholar 

  13. 13.

    McGovern, P. J., White, O. L. & Schenk, P. M. Tectonism across Pluto: mapping and interpretations. In Proc. Pluto System after New Horizons, abstr. 2133 (Lunar and Planetary Institute, 2019).

  14. 14.

    Cruikshank, D. P. et al. Recent cryovolcanism in virgil fossae on Pluto. Icarus 330, 155–168 (2019).

    Google Scholar 

  15. 15.

    Beyer, R. A. et al. Charon tectonics. Icarus 287, 161–174 (2017).

    Google Scholar 

  16. 16.

    Conrad, J. W. et al. An upper bound on Pluto’s heat flux from a lack of flexural response of its normal faults. Icarus 328, 210–217 (2019).

    Google Scholar 

  17. 17.

    Jackson, J. A. & White, N. J. Normal faulting in the upper continental crust: observations from regions of active extension. J. Struct. Geol. 11, 15–36 (1989).

    Google Scholar 

  18. 18.

    Canup, R. M. On a giant impact origin of Charon, Nix, and Hydra. Astron. J. 141, 35 (2011).

    Google Scholar 

  19. 19.

    McKinnon, W. B. et al. Origin of the Pluto–Charon system: constraints from the New Horizons flyby. Icarus 287, 2–11 (2017).

    Google Scholar 

  20. 20.

    Singer, K. N. et al. Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science 363, 955–959 (2019).

    Google Scholar 

  21. 21.

    Schenk, P. M. et al. Basins, fractures and volcanoes: global cartography and topography of Pluto from New Horizons. Icarus 314, 400–433 (2018).

    Google Scholar 

  22. 22.

    Agnor, C. B., Canup, R. M. & Levison, H. F. On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142, 219–237 (1999).

    Google Scholar 

  23. 23.

    Squyres, S. W., Reynolds, R. T., Summers, A. L. & Shung, F. Accretional heating of the satellites of Saturn and Uranus. J. Geophys. Res. 93, 8779–8794 (1988).

    Google Scholar 

  24. 24.

    Barr, A. C., Citron, R. I. & Canup, R. M. Origin of a partially differentiated Titan. Icarus 209, 858–862 (2010).

    Google Scholar 

  25. 25.

    Monteux, J., Tobie, G., Choblet, G. & LeFeuvre, M. Can large icy moons accrete undifferentiated? Icarus 237, 377–387 (2014).

    Google Scholar 

  26. 26.

    Stevenson, D. J. in Mantle Convection (ed. Peltier, W. R.) 817–873 (Gordon and Breach Science, 1989).

  27. 27.

    Bierson, C. J. & Nimmo, F. Using the density of Kuiper belt objects to constrain their composition and formation history. Icarus 326, 10–17 (2019).

    Google Scholar 

  28. 28.

    Castillo-Rogez, J., Vernazza, P. & Walsh, K. Geophysical evidence that Saturn’s moon Phoebe originated from a C-type asteroid reservoir. Mon. Not. R. Astron. Soc. 486, 538–543 (2019).

    Google Scholar 

  29. 29.

    Kenyon, S. J. & Bromley, B. C. Coagulation calculations of icy planet formation at 15-150 au: a correlation between the maximum radius and the slope of the size distribution for trans-Neptunian objects. Astron. J. 143, 63 (2012).

    Google Scholar 

  30. 30.

    Morbidelli, A. & Nesvorny, D. in The Trans-Neptunian Solar System (ed. Prialnik, D. et al.) 25–53 (Elsevier, 2020).

  31. 31.

    Youdin, A. N. & Goodman, J. Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005).

    Google Scholar 

  32. 32.

    Nesvorný, D., Youdin, A. N. & Richardson, D. C. Formation of Kuiper belt binaries by gravitational collapse. Astron. J. 140, 785–793 (2010).

    Google Scholar 

  33. 33.

    Johansen, A., Low, M.-M. M., Lacerda, P. & Bizzarro, M. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, 1500109 (2015).

    Google Scholar 

  34. 34.

    Ormel, C. W. in Formation, Evolution, and Dynamics of Young Solar Systems (eds Pessah, M. & Gressel, O.) 197–228 (Springer, 2017).

  35. 35.

    Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017).

    Google Scholar 

  36. 36.

    Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. USA 114, 6712–6716 (2017).

    Google Scholar 

  37. 37.

    Dombard, A. J. & McKinnon, W. B. Elastoviscoplastic relaxation of impact crater topography with application to Ganymede and Callisto. J. Geophys. Res. Planets 111, E01001 (2006).

    Google Scholar 

  38. 38.

    McKinnon, W. B. et al. Pluto’s heat flow: a mystery wrapped in an ocean inside an ice shell. In Proc. Lunar and Planetary Science Conference Vol. 49, abstr. 2715 (Lunar and Planetary Institute, 2018).

  39. 39.

    Desch, S. J. & Neveu, M. Differentiation and cryovolcanism on Charon: a view before and after New Horizons. Icarus 287, 175–186 (2017).

    Google Scholar 

  40. 40.

    Neveu, M., Desch, S. J. & Castillo-Rogez, J. C. Aqueous geochemistry in icy world interiors: equilibrium fluid, rock, and gas compositions, and fate of antifreezes and radionuclides. Geochim. Cosmochim. Acta 212, 324–371 (2017).

    Google Scholar 

  41. 41.

    Malamud, U., Perets, H. B. & Schubert, G. The contraction/expansion history of Charon with implications for its planetary-scale tectonic belt. Mon. Not. R. Astron. Soc. 468, 1056–1069 (2017).

    Google Scholar 

  42. 42.

    Schaller, E. L. & Brown, M. E. Volatile loss and retention on Kuiper belt objects. Astrophys. J. Lett. 659, L61–L64 (2007).

    Google Scholar 

  43. 43.

    Desch, S. J., Cook, J. C., Doggett, T. C. & Porter, S. B. Thermal evolution of Kuiper belt objects, with implications for cryovolcanism. Icarus 202, 694–714 (2009).

    Google Scholar 

  44. 44.

    Rubin, M. E., Desch, S. J. & Neveu, M. The effect of Rayleigh–Taylor instabilities on the thickness of undifferentiated crust on Kuiper belt objects. Icarus 236, 122–135 (2014).

    Google Scholar 

  45. 45.

    Hiesinger, H. et al. Cratering on ceres: implications for its crust and evolution. Science 353, 6303 (2016).

    Google Scholar 

  46. 46.

    Malamud, U. & Prialnik, D. Modeling Kuiper belt objects Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies. Icarus 246, 21–36 (2015).

    Google Scholar 

  47. 47.

    Kamata, S. et al. Pluto’s ocean is capped and insulated by gas hydrates. Nat. Geosci. 12, 407–410 (2019).

    Google Scholar 

  48. 48.

    Barr, A. C. & Collins, G. C. Tectonic activity on Pluto after the Charon-forming impact. Icarus 246, 146–155 (2015).

    Google Scholar 

  49. 49.

    Keane, J. T., Matsuyama, I., Kamata, S. & Steckloff, J. K. Reorientation and faulting of Pluto due to volatile loading within Sputnik Planitia. Nature 540, 90–93 (2016).

    Google Scholar 

  50. 50.

    Desch, S. J., Cook, J. C., Doggett, T. C. & Porter, S. B. Thermal evolution of Kuiper belt objects, with implications for cryovolcanism. Icarus 202, 694–714 (2009).

    Google Scholar 

  51. 51.

    Hammond, N. P., Parmenteir, E. M. & Barr, A. C. Compaction and melt transport in ammonia-rich ice shells: implications for the evolution of Triton. J. Geophys. Res. Planets 123, 3105–3118 (2018).

    Google Scholar 

  52. 52.

    Dalle Ore, C. M. et al. Detection of ammonia on Pluto’s surface in a region of geologically recent tectonism. Sci. Adv. 5, eaav5731 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank J. Keane and A. Youdin for their helpful comments. C.J.B. acknowledges the University of California Santa Cruz for a dissertation year fellowship that supported this work.

Author information

Affiliations

Authors

Contributions

All authors contributed to the writing and development of ideas within this manuscript. The model used was developed and run by C.J.B.

Corresponding author

Correspondence to Carver J. Bierson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Tamara Goldin.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bierson, C.J., Nimmo, F. & Stern, S.A. Evidence for a hot start and early ocean formation on Pluto. Nat. Geosci. 13, 468–472 (2020). https://doi.org/10.1038/s41561-020-0595-0

Download citation