Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global distribution of sediment-hosted metals controlled by craton edge stability

Abstract

Sustainable development and the transition to a clean-energy economy drives ever-increasing demand for base metals, substantially outstripping the discovery rate of new deposits and necessitating dramatic improvements in exploration success. Rifting of the continents has formed widespread sedimentary basins, some of which contain large quantities of copper, lead and zinc. Despite over a century of research, the geological structure responsible for the spatial distribution of such fertile regions remains enigmatic. Here, we use statistical tests to compare deposit locations with new maps of lithospheric thickness, which outline the base of tectonic plates. We find that 85% of sediment-hosted base metals, including all giant deposits (>10 megatonnes of metal), occur within 200 kilometres of the transition between thick and thin lithosphere. Rifting in this setting produces greater subsidence and lower basal heat flow, enlarging the depth extent of hydrothermal circulation available for forming giant deposits. Given that mineralization ages span the past two billion years, this observation implies long-term lithospheric edge stability and a genetic link between deep Earth processes and near-surface hydrothermal mineral systems. This discovery provides an unprecedented global framework for identifying fertile regions for targeted mineral exploration, reducing the search space for new deposits by two-thirds on this lithospheric thickness criterion alone.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mineralization system for genesis of sediment-hosted base metal deposits.
Fig. 2: Distribution of sediment-hosted and IOCG base metal deposits as a function of Australian lithospheric thickness.
Fig. 3: Global distribution of sediment-hosted base metal deposits as a function of lithospheric thickness.
Fig. 4: CDFs for global sediment-hosted base metals.
Fig. 5: Thermal modelling of basin subsidence histories.

Data availability

All data, including digital versions of lithospheric thickness maps and deposit databases, are available in the manuscript or the Supplementary Information, and on the OSF database (https://osf.io/twksd).

References

  1. 1.

    Ali, S. H. et al. Mineral supply for sustainable development requires resource governance. Nature 543, 367–372 (2017).

    Google Scholar 

  2. 2.

    Schodde, R. Long term trends in global exploration – are we finding enough metal? In 11th Fennoscandian Exploration and Mining Conference (Minex Consulting, 2017); https://go.nature.com/3hfWBKo.

  3. 3.

    Nassar, N. T., Graedel, T. E. & Harper, E. M. By-product metals are technologically essential but have problematic supply. Sci. Adv. 1, 1400180 (2015).

    Google Scholar 

  4. 4.

    Mudd, G. M. et al. Critical Minerals in Australia: a Review of Opportunities and Research Needs (Geoscience Australia, 2018).

  5. 5.

    Global Energy Transformation: a Roadmap to 2050 (IRENA, 2019).

  6. 6.

    Dominish, E., Teske, S. & Florin, N. Responsible Minerals Sourcing for Renewable Energy (UTS Institute for Sustainable Futures, 2019).

  7. 7.

    Sovacool, B. B. K. et al. Sustainable minerals and metals for a low-carbon future. Science 367, 30–33 (2020).

    Google Scholar 

  8. 8.

    The UNCOVER Group Searching the deep Earth: A vision for exploration geoscience in Australia (Australian Academy of Science, 2012).

  9. 9.

    McCuaig, T. C., Beresford, S. & Hronsky, J. Translating the mineral systems approach into an effective exploration targeting system. Ore Geol. Rev. 38, 128–138 (2010).

    Google Scholar 

  10. 10.

    Wyborn, L. A. I., Heinrich, C. A. & Jaques, A. L. Australian Proterozoic mineral systems: essential ingredients and mappable criteria. In Proc. AusIMM Annual Conference, 109–115 (Australasian Institute of Mining and Metallurgy, 1994).

  11. 11.

    Bierlein, F. P., Groves, D. I., Goldfarb, R. J. & Dubé, B. Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits. Miner. Depos. 40, 874–886 (2006).

    Google Scholar 

  12. 12.

    McCuaig, T. C. & Hronsky, J. M. A. in Building Exploration Capability for the 21st Century Special Publication No. 18 (eds Kelley, K. D. & Golden, H. C.) 153–175 (Society of Economic Geologists, 2014).

  13. 13.

    Dentith, M., Yuan, H., Johnson, S., Murdie, R. & Piña-Varas, P. Application of deep-penetrating geophysical methods to mineral exploration: examples from western Australia. Geophysics 83, https://doi.org/10.1190/geo2017-0482.1 (2018).

  14. 14.

    Skirrow, R. G. et al. Mapping iron oxide Cu–Au (IOCG) mineral potential in Australia using a knowledge-driven mineral systems-based approach. Ore Geol. Rev. 113, 103011 (2019).

    Google Scholar 

  15. 15.

    Begg, G. C. et al. Lithospheric, cratonic, and geodynamic setting of Ni–Cu–PGE sulfide deposits. Econ. Geol. 105, 1057–1070 (2010).

    Google Scholar 

  16. 16.

    Griffin, W. L., Begg, G. C. & O’Reilly, S. Y. Continental-root control on the genesis of magmatic ore deposits. Nat. Geosci. 6, 905–910 (2013).

    Google Scholar 

  17. 17.

    Rosenbaum, G. et al. Subduction of the Nazca Ridge and the Inca Plateau: insights into the formation of ore deposits in Peru. Earth Planet. Sci. Lett. 239, 18–32 (2005).

    Google Scholar 

  18. 18.

    Butterworth, N. et al. Tectonic environments of South American porphyry copper magmatism through time revealed by spatiotemporal data mining. Tectonics 35, 2847–2862 (2016).

    Google Scholar 

  19. 19.

    O’Reilly, S. Y., Griffin, W. L. & Pearson, N. J. Geodynamic and geophysical consequences of stealth(y) mantle metasomatism: Craton evolution and metallogeny. In Proc. 11th International Kimberlite Conference abstr. 4537 (2017).

  20. 20.

    McCuaig, T. C., Scarselli, S., Connor, T. O., Busuttil, S. & McCormack, N. in Metals, Minerals, and Society (eds Arribas R. et al.) Ch. 3 (Society of Economic Geologists, 2018).

  21. 21.

    Leach, D. L. et al. Sediment-hosted lead–zinc deposits in Earth history. Econ. Geol. 105, 593–625 (2010).

    Google Scholar 

  22. 22.

    Hitzman, M. W., Selley, D. & Bull, S. Formation of sedimentary rock-hosted stratiform copper deposits through Earth history. Econ. Geol. 105, 627–639 (2010).

    Google Scholar 

  23. 23.

    Manning, A. H. & Emsbo, P. Testing the potential role of brine reflux in the formation of sedimentary exhalative (sedex) ore deposits. Ore Geol. Rev. 102, 862–874 (2018).

    Google Scholar 

  24. 24.

    Huston, D. L. et al. Tectono-metallogenic systems – the place of mineral systems within tectonic evolution, with an emphasis on Australian examples. Ore Geol. Rev. 76, 168–210 (2016).

    Google Scholar 

  25. 25.

    Azadi, M., Northey, S. A., Ali, S. H. & Edraki, M. Transparency on greenhouse gas emissions from mining to enable climate change mitigation. Nat. Geosci. 13, 100–104 (2020).

    Google Scholar 

  26. 26.

    Geophysical Archive Data Delivery System (Geoscience Australia, 2018); geoscience.gov.au/gadds.

  27. 27.

    Priestley, K. & McKenzie, D. P. The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth Planet. Sci. Lett. 381, 78–91 (2013).

    Google Scholar 

  28. 28.

    Yamauchi, H. & Takei, Y. Polycrystal anelasticity at near-solidus temperatures. J. Geophys. Res. Solid Earth 121, 7790–7820 (2016).

    Google Scholar 

  29. 29.

    Fishwick, S. & Rawlinson, N. 3-D structure of the Australian lithosphere from evolving seismic datasets. Aust. J. Earth Sci. 59, 809–826 (2012).

    Google Scholar 

  30. 30.

    Schaeffer, A. J. & Lebedev, S. Global shear speed structure of the upper mantle and transition zone. Geophys. J. Int. 194, 417–449 (2013).

    Google Scholar 

  31. 31.

    Richards, F. D., Hoggard, M. J., Cowton, L. R. & White, N. J. Reassessing the thermal structure of oceanic lithosphere with revised global inventories of basement depths and heat flow measurements. J. Geophys. Res. Solid Earth 123, 9136–9161 (2018).

    Google Scholar 

  32. 32.

    Huston, D. L. et al. Preliminary National-scale Lead Isotope Maps of Australia Record 2019/01 (Geoscience Australia, 2019).

  33. 33.

    Hobbs, B. E. et al. in After 2000 – the Future of Mining, 34–49 (Australasian Institute of Mining and Metallurgy, 2000).

  34. 34.

    Kennett, B. L. N., Saygin, E., Fomin, T. & Blewett, R. Deep Crustal Seismic Reflection Profiling: Australia 1978–2015 (ANU Press and Geoscience Australia, 2016).

  35. 35.

    Heinson, G., Didana, Y., Soeffky, P., Thiel, S. & Wise, T. The crustal geophysical signature of a world-class magmatic mineral system. Sci. Rep. 8, 10608 (2018).

    Google Scholar 

  36. 36.

    Skirrow, R. G., van der Wielen, S. E., Champion, D. C., Czarnota, K. & Thiel, S. Lithospheric architecture and mantle metasomatism linked to Iron Oxide Cu–Au ore formation: multidisciplinary evidence from the Olympic Dam region, South Australia. Geochem. Geophys. Geosyst. 19, 2673–2705 (2018).

    Google Scholar 

  37. 37.

    Curtis, S. & Thiel, S. Identifying lithospheric boundaries using magnetotellurics and Nd isotope geochemistry: an example from the Gawler Craton, Australia. Precambrian Res. 320, 403–423 (2019).

    Google Scholar 

  38. 38.

    Kolmogorov, A. N. Sulla determinazione empirica di una legge di distribuzione. G. della Istituto Ital. degli Attuari 4, 83–91 (1933).

    Google Scholar 

  39. 39.

    Menzies, M., Xu, Y., Zhang, H. & Fan, W. Integration of geology, geophysics and geochemistry: a key to understanding the North China craton. Lithos 96, 1–21 (2007).

    Google Scholar 

  40. 40.

    Currie, C. A. & van Wijk, J. How craton margins are preserved: insights from geodynamic models. J. Geodyn. 100, 144–158 (2016).

    Google Scholar 

  41. 41.

    Davies, D. R. & Rawlinson, N. On the origin of recent intraplate volcanism in Australia. Geology 42, 1031–1034 (2014).

    Google Scholar 

  42. 42.

    Sloan, R. A., Jackson, J. A., McKenzie, D. P. & Priestley, K. Earthquake depth distributions in central Asia, and their relations with lithosphere thickness, shortening and extension. Geophys. J. Int. 185, 1–29 (2011).

    Google Scholar 

  43. 43.

    Gibson, G. M. et al. Basin architecture and evolution in the Mount Isa mineral province, northern Australia: constraints from deep seismic reflection profiling and implications for ore genesis. Ore Geol. Rev. 76, 414–441 (2016).

    Google Scholar 

  44. 44.

    Biggs, J., Nissen, E., Craig, T., Jackson, J. & Robinson, D. P. Breaking up the hanging wall of a rift-border fault: the 2009 Karonga earthquakes, Malawi. Geophys. Res. Lett. 37, L11305 (2010).

    Google Scholar 

  45. 45.

    Allen, P. A. & Armitage, J. J. in Tectonics of Sedimentary Basins: Recent Advances 1st edn (eds Busby, C. and Azor, A.) Ch. 30 (Blackwell, 2012).

  46. 46.

    Jordan, T. H. Composition and development of the continental tectosphere. Nature 274, 544–548 (1978).

    Google Scholar 

  47. 47.

    Huston, D. L., Pehrsson, S., Eglington, B. M. & Zaw, K. The geology and metallogeny of volcanic-hosted massive sulfide deposits: variations through geologic time and with tectonic setting. Econ. Geol. 105, 571–591 (2010).

    Google Scholar 

  48. 48.

    Regis, D. et al. Evidence for Neoarchean Ni–Cu-bearing mafic intrusions along a major lithospheric structure: a case study from the south Rae craton (Canada). Precambrian Res. 302, 312–339 (2017).

    Google Scholar 

  49. 49.

    Alghamdi, A. H., Aitken, A. R. & Dentith, M. C. The deep crustal structure of the Warakurna LIP, and insights on Proterozoic LIP processes and mineralisation. Gondwana Res. 56, 1–11 (2018).

    Google Scholar 

  50. 50.

    Arndt, N. T., Lesher, C. M. & Czamanske, G. K. in Economic Geology: 100th Anniversary Volume 1905–2005 (eds Hedenquist, J. W. et al.) 5–24 (Society of Economic Geologists, 2005).

  51. 51.

    Raymond, O., Totterdell, J. M., Woods, M. A. & Stewart, A. J. Australian Geological Provinces 2018.01 edition (Geoscience Australia, 2018); http://pid.geoscience.gov.au/dataset/ga/116823.

  52. 52.

    Hitzman, M. W., Kirkham, R., Broughton, D., Thorson, J. & Selley, D. in Economic Geology: 100th Anniversary Volume 1905–2005 (eds Hedenquist, J. W. et al.) 609–642 (Society of Economic Geologists, 2005).

  53. 53.

    Cox, D. P., Lindsey, D. A., Singer, D. A., Moring, B. C. & Diggles, M. F. Sediment-hosted Copper Deposits of the World: Deposit Models and Database Open-File Report 03-107 (USGS, 2007).

  54. 54.

    Taylor, R. D., Leach, D. L., Bradley, D. C. & Pisarevsky, S. A. Compilation of Mineral Resource Data for Mississippi Valley-type and Clastic-dominated Sediment-hosted Lead-Zinc Deposits Open-File Report 1297 (USGS, 2009).

  55. 55.

    Sillitoe, R. H. Porphyry copper systems. Econ. Geol. 105, 3–41 (2010).

    Google Scholar 

  56. 56.

    Hoatson, D. M., Jaireth, S. & Jaques, A. L. Nickel sulfide deposits in Australia: characteristics, resources, and potential. Ore Geol. Rev. 29, 177–241 (2006).

    Google Scholar 

  57. 57.

    Franklin, J. M., Gibson, H. L., Jonasson, I. R. & Galley, A. G. in Economic Geology: 100th Anniversary Volume 1905–2005 (eds Hedenquist, J. W. et al.) 523–560 (Society of Economic Geologists, 2005).

  58. 58.

    Sexton, M. Australian Mineral Occurrences Collection eCat Id 73131 (Geoscience Australia, 2011); http://pid.geoscience.gov.au/dataset/ga/73131.

  59. 59.

    Cooke, D. R., Bull, S. W., Large, R. R. & McGoldrick, P. J. The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb–Zn (sedex) deposits. Econ. Geol. 95, 1–18 (2000).

    Google Scholar 

  60. 60.

    Appold, M. S., Numelin, T. J., Shepherd, T. J. & Chenery, S. R. Limits on the metal content of fluid inclusions in gangue minerals from the Viburnum Trend, Southeast Missouri, determined by laser ablation ICP-MS. Econ. Geol. 99, 185–198 (2004).

    Google Scholar 

  61. 61.

    Kostova, B., Pettke, T., Driesner, T., Petrov, P. & Heinrich, C. A. LA ICP-MS study of fluid inclusions in quartz from the Yuzhna Petrovitsa deposit, Madan ore field, Bulgaria. Swiss Bull. Mineral. Petrol. 84, 25–36 (2004).

    Google Scholar 

  62. 62.

    Wilkinson, J. J., Everett, C. E., Boyce, A. J., Gleeson, S. A. & Rye, D. M. Intracratonic crustal seawater circulation and the genesis of subseafloor zinc–lead mineralization in the Irish orefield. Geology 33, 805–808 (2005).

    Google Scholar 

  63. 63.

    Kotzeva, B. G., Guillong, M., Stefanova, E. & Piperov, N. B. LA-ICP-MS analysis of single fluid inclusions in a quartz crystal (Madan ore district, Bulgaria). J. Geochem. Explor. 108, 163–175 (2011).

    Google Scholar 

  64. 64.

    Fusswinkel, T., Wagner, T., Wenzel, T., Wälle, M. & Lorenz, J. Red bed and basement sourced fluids recorded in hydrothermal Mn–Fe–As veins, Sailauf (Germany): a LA-ICPMS fluid inclusion study. Chem. Geol. 363, 22–39 (2014).

    Google Scholar 

  65. 65.

    Wilkinson, J. J., Stoffell, B., Wilkinson, C. C., Jeffries, T. E. & Appold, M. S. Anomalously metal-rich fluids form hydrothermal ore deposits. Science 323, 764–767 (2009).

    Google Scholar 

  66. 66.

    Davey, J. Anomalous Metal Enrichment of Basin Brines in the Zambian Copperbelt: a Comparison of Fluid Chemistry in Contrasting Sediment-hosted Copper Systems. PhD thesis, Univ. Southampton (2019).

  67. 67.

    Fusswinkel, T. et al. Fluid mixing forms basement-hosted Pb–Zn deposits: insight from metal and halogen geochemistry of individual fluid inclusions. Geology 41, 679–682 (2013).

    Google Scholar 

  68. 68.

    Schlegel, T. U., Wagner, T., Wälle, M. & Heinrich, C. A. Hematite breccia-hosted iron oxide copper–gold deposits require magmatic fluid components exposed to atmospheric oxidation: evidence from Prominent Hill, Gawler Craton, South Australia. Econ. Geol. 113, 597–644 (2018).

    Google Scholar 

  69. 69.

    Priestley, K. & McKenzie, D. P. The thermal structure of the lithosphere from shear wave velocities. Earth Planet. Sci. Lett. 244, 285–301 (2006).

    Google Scholar 

  70. 70.

    Fishwick, S., Heintz, M., Kennett, B. L. N., Reading, A. M. & Yoshizawa, K. Steps in lithospheric thickness within eastern Australia, evidence from surface wave tomography. Tectonics 27, TC4009 (2008).

    Google Scholar 

  71. 71.

    Debayle, E., Dubuffet, F. & Durand, S. An automatically updated S-wave model of the upper mantle and the depth extent of azimuthal anisotropy. Geophys. Res. Lett. 43, 674–682 (2016).

    Google Scholar 

  72. 72.

    Ho, T., Priestley, K. & Debayle, E. A global horizontal shear velocity model of the upper mantle from multimode Love wave measurements. Geophys. J. Int. 207, 542–561 (2016).

    Google Scholar 

  73. 73.

    Priestley, K., McKenzie, D. & Ho, T. in Lithospheric Discontinuities (eds Yuan, H. and Romanowicz, B.) Ch. 6 (Wiley, 2018).

  74. 74.

    Schaeffer, A. J. & Lebedev, S. Imaging the North American continent using waveform inversion of global and USArray data. Earth Planet. Sci. Lett. 402, 26–41 (2014).

    Google Scholar 

  75. 75.

    Celli, N. L., Lebedev, S., Schaeffer, A. J. & Gaina, C. African cratonic lithosphere carved by mantle plumes. Nat. Commun. 11, 92 (2020).

    Google Scholar 

  76. 76.

    Celli, N. L., Lebedev, S., Schaeffer, A. J., Ravenna, M. & Gaina, C. The upper mantle beneath the South Atlantic Ocean, South America and Africa from waveform tomography with massive data sets. Geophys. J. Int. 221, 178–204 (2020).

    Google Scholar 

  77. 77.

    Kennett, B. L. N., Fichtner, A., Fishwick, S. & Yoshizawa, K. Australian seismological reference model (AuSREM): mantle component. Geophys. J. Int. 192, 871–887 (2013).

    Google Scholar 

  78. 78.

    Yoshizawa, K. Radially anisotropic 3-D shear wave structure of the Australian lithosphere and asthenosphere from multi-mode surface waves. Phys. Earth Planet. Inter. 235, 33–48 (2014).

    Google Scholar 

  79. 79.

    An, M. & Shi, Y. Lithospheric thickness of the Chinese continent. Phys. Earth Planet. Inter. 159, 257–266 (2006).

    Google Scholar 

  80. 80.

    Goes, S., Armitage, J., Harmon, N., Smith, H. & Huismans, R. Low seismic velocities below mid-ocean ridges: attenuation versus melt retention. J. Geophys. Res. 117, B12403 (2012).

    Google Scholar 

  81. 81.

    Afonso, J. C. et al. 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle: III. Thermochemical tomography in the Western-Central US. J. Geophys. Res. Solid Earth 121, 7337–7370 (2016).

    Google Scholar 

  82. 82.

    Cammarano, F. & Guerri, M. Global thermal models of the lithosphere. Geophys. J. Int. 210, 56–72 (2017).

    Google Scholar 

  83. 83.

    Klöcking, M., White, N. J., Maclennan, J., McKenzie, D. & Fitton, J. G. Quantitative relationships between basalt geochemistry, shear wave velocity, and asthenospheric temperature beneath western North America. Geochem. Geophys. Geosyst. 19, 3376–3404 (2018).

    Google Scholar 

  84. 84.

    Afonso, J. C., Salajegheh, F., Szwillus, W., Ebbing, J. & Gaina, C. A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets. Geophys. J. Int. 217, 1602–1628 (2019).

    Google Scholar 

  85. 85.

    Karato, S. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20, 1623–1626 (1993).

    Google Scholar 

  86. 86.

    Cammarano, F., Goes, S., Vacher, P. & Giardini, D. Inferring upper-mantle temperatures from seismic velocities. Phys. Earth Planet. Inter. 138, 197–222 (2003).

    Google Scholar 

  87. 87.

    Jackson, I., FitzGerald, J. D., Faul, U. H. & Tan, B. H. Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J. Geophys. Res. 107, 2360 (2002).

    Google Scholar 

  88. 88.

    Sundberg, M. & Cooper, R. F. A composite viscoelastic model for incorporating grain boundary sliding and transient diffusion creep: correlating creep and attenuation responses for materials with a fine grain size. Phil. Mag. 90, 2817–2840 (2010).

    Google Scholar 

  89. 89.

    McCarthy, C., Takei, Y. & Hiraga, T. Experimental study of attenuation and dispersion over a broad frequency range: 2. The universal scaling of polycrystalline materials. J. Geophys. Res. 116, B09207 (2011).

    Google Scholar 

  90. 90.

    Takei, Y., Karasawa, F. & Yamauchi, H. Temperature, grain size, and chemical controls on polycrystal anelasticity over a broad frequency range extending into the seismic range. J. Geophys. Res. Solid Earth 119, 5414–5443 (2014).

    Google Scholar 

  91. 91.

    Faul, U. & Jackson, I. Transient creep and strain energy dissipation: an experimental perspective. Annu. Rev. Earth Planet. Sci. 43, 541–569 (2015).

    Google Scholar 

  92. 92.

    Faul, U. H. & Jackson, I. The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet. Sci. Lett. 234, 119–134 (2005).

    Google Scholar 

  93. 93.

    Jackson, I. & Faul, U. H. Grainsize-sensitive viscoelastic relaxation in olivine: towards a robust laboratory-based model for seismological application. Phys. Earth Planet. Inter. 183, 151–163 (2010).

    Google Scholar 

  94. 94.

    Takei, Y. Effects of partial melting on seismic velocity and attenuation: a new insight from experiments. Annu. Rev. Earth Planet. Sci. 45, 447–470 (2017).

    Google Scholar 

  95. 95.

    Taylor, W. R. An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. J. Mineral. Geochem. 172, 381–408 (1998).

    Google Scholar 

  96. 96.

    Nickel, K. G. & Green, D. H. Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet. Sci. Lett. 73, 158–170 (1985).

    Google Scholar 

  97. 97.

    Nimis, P. & Grütter, H. Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib. Mineral. Petrol. 159, 411–427 (2010).

    Google Scholar 

  98. 98.

    Gasparik, T. Two-pyroxene thermobarometry with new experimental data in the system CaO–MgO–Al2O3–SiO2. Contrib. Mineral. Petrol. 87, 87–97 (1984).

    Google Scholar 

  99. 99.

    Klemme, S. The influence of Cr on the garnet–spinel transition in the Earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling. Lithos 77, 639–646 (2004).

    Google Scholar 

  100. 100.

    Nimis, P. & Taylor, W. R. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Mineral. Petrol. 139, 541–554 (2000).

    Google Scholar 

  101. 101.

    Mather, K. A., Pearson, D. G., McKenzie, D. P., Kjarsgaard, B. A. & Priestley, K. Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos 125, 729–742 (2011).

    Google Scholar 

  102. 102.

    McKenzie, D. P., Jackson, J. & Priestley, K. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett. 233, 337–349 (2005).

    Google Scholar 

  103. 103.

    Osako, M., Ito, E. & Yoneda, A. Simultaneous measurements of thermal conductivity and thermal diffusivity for garnet and olivine under high pressure. Phys. Earth Planet. Inter. 143–144, 311–320 (2004).

    Google Scholar 

  104. 104.

    Jaupart, C., Labrosse, S. & Mareschal, J. C. in Treatise on Geophysics Vol. 7 (eds Schubert, G. and Bercovici, D.) 253–303 (Elsevier, 2007).

  105. 105.

    Kennett, B. L. N., Salmon, M., Saygin, E. & Group, A. W. AusMoho: the variation of Moho depth in Australia. Geophys. J. Int. 187, 946–958 (2011).

    Google Scholar 

  106. 106.

    Dalton, C. A., Langmuir, C. H. & Gale, A. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science 344, 80–83 (2014).

    Google Scholar 

  107. 107.

    Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).

    Google Scholar 

  108. 108.

    Shorttle, O., Maclennan, J. & Lambart, S. Quantifying lithological variability in the mantle. Earth Planet. Sci. Lett. 395, 24–40 (2014).

    Google Scholar 

  109. 109.

    Lau, H. C. et al. Inferences of mantle viscosity based on ice age data sets: radial structure. J. Geophys. Res. Solid Earth 121, 6991–7012 (2016).

    Google Scholar 

  110. 110.

    Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals—I. Physical properties. Geophys. J. Int. 162, 610–632 (2005).

    Google Scholar 

  111. 111.

    Connolly, J. A. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10, Q10014 (2009).

    Google Scholar 

  112. 112.

    Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals—II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

    Google Scholar 

  113. 113.

    Holland, T. J. & Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29, 333–383 (2011).

    Google Scholar 

  114. 114.

    Cottaar, S., Heister, T., Rose, I. & Unterborn, C. BurnMan: a lower mantle mineral physics toolkit. Geochem. Geophys. Geosyst. 15, 1164–1179 (2014).

    Google Scholar 

  115. 115.

    Cammarano, F., Romanowicz, B., Stixrude, L., Lithgow-bertelloni, C. & Xu, W. Inferring the thermochemical structure of the upper mantle from seismic data. Geophys. J. Int. 179, 1169–1185 (2009).

    Google Scholar 

  116. 116.

    Dannberg, J. et al. The importance of grain size to mantle dynamics and seismological observations. Geochem. Geophys. Geosyst. 18, 3034–3061 (2017).

    Google Scholar 

  117. 117.

    Afonso, J. C. et al. 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: a priori petrological information and geophysical observables. J. Geophys. Res. Solid Earth 118, 2586–2617 (2013).

    Google Scholar 

  118. 118.

    Afonso, J. C., Fullea, J., Yang, Y., Connolly, J. A. & Jones, A. G. 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: general methodology and resolution analysis. J. Geophys. Res. Solid Earth 118, 1650–1676 (2013).

    Google Scholar 

  119. 119.

    Dalton, C. A., Ekström, G. & Dziewonski, A. M. Global seismological shear velocity and attenuation: a comparison with experimental observations. Earth Planet. Sci. Lett. 284, 65–75 (2009).

    Google Scholar 

  120. 120.

    Richards, F. D., Hoggard, M. J., White, N. J. & Ghelichkhan, S. Quantifying the relationship between short-wavelength dynamic topography and thermomechanical structure of the upper mantle using calibrated parameterization of anelasticity. J. Geophys. Res. Solid Earth (in the press).

  121. 121.

    Goes, S., Govers, R. & Vacher, P. Shallow mantle temperatures under Europe from P and S wave tomography. J. Geophys. Res. 105, 11153–11169 (2000).

    Google Scholar 

  122. 122.

    Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res. 111, B05401 (2006).

    Google Scholar 

  123. 123.

    Steinberger, B. & Becker, T. W. A comparison of lithospheric thickness models. Tectonophysics 746, 325–338 (2018).

    Google Scholar 

  124. 124.

    Hayes, G. P. et al. Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61 (2018).

    Google Scholar 

  125. 125.

    Cook, F. A., Van Der Velden, A. J., Hall, K. W. & Roberts, B. J. Frozen subduction in Canada's Northwest Territories: lithoprobe deep lithospheric reflection profiling of the western Canadian Shield. Tectonics 18, 1–24 (1999).

    Google Scholar 

  126. 126.

    McKenzie, D. P. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 40, 25–32 (1978).

    Google Scholar 

  127. 127.

    Lucazeau, F. Analysis and mapping of an updated terrestrial heat flow data set. Geochem. Geophys. Geosyst. 20, 4001–4024 (2019).

    Google Scholar 

Download references

Acknowledgements

This work is a contribution to the Australian government’s Exploring for the Future program. We are grateful to B. Steinberger, N. Rawlinson, K. Yoshizawa and B. Kennett for sharing lithospheric thickness maps. We thank J. C. Afonso, E. Bastrakov, G. Begg, R. Blewett, A. Bufe, D. Champion, R. Davies, B. Delbridge, A. Dickinson, M. Doublier, R. Fu, S. Goes, A. Gorbatov, B. Hodgin, B. Holtzman, C. Jiang, J. Kingslake, S. Liu, Z. Ma, T. Mackey, P. McFadden, D. McKenzie, D. Müller, P. Nimis, C. O’Malley, E. Powell, K. Priestley, R. Remm, T. Schlegel, D. Schutt, O. Shorttle, R. Skirrow, E. Smith, S. Stephenson, Y. Takei, C.-Y. Tien, N. White and J. Winterbourne for their assistance and discussions. S. Lebedev provided helpful feedback on an early draft of this work. M.J.H. acknowledges support from the National Aeronautics and Space Administration (grant NNX17AE17G) and the Donors of the American Chemical Society Petroleum Research Fund (59062-DNI8). F.D.R. acknowledges support from the Schmidt Science Fellows program, in partnership with the Rhodes Trust. K.C. and D.L.H. publish with permission of the CEO of Geoscience Australia. Geoscience Australia eCat ID 132624. M.J.H. is indebted to J. Austermann and J. Mitrovica for personal guidance and affording him the freedom to pursue this research.

Author information

Affiliations

Authors

Contributions

K.C. discovered this relationship. K.C. and M.J.H. conceived and designed the study. D.L.H., K.C., F.D.R. and M.J.H. compiled deposit databases. A.L.J. collated Australian xenolith data. A.L.J., F.D.R. and M.J.H. performed the thermobarometry and palaeogeotherm modelling. F.D.R. and M.J.H. developed the shear-wave to temperature conversion scheme. F.D.R. calibrated anelasticity parameterizations. M.J.H. generated lithospheric thickness maps, performed statistical tests, made figures and compiled supplementary information. S.G., M.J.H. and K.C. investigated implications of rifting continental lithosphere. The paper was written by K.C. and M.J.H., with guidance from all authors.

Corresponding authors

Correspondence to Mark J. Hoggard or Karol Czarnota.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Rebecca Neely.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Global lithospheric thickness maps obtained from calibration of four upper mantle surface wave tomography models.

(a) SL2013sv model.30 Symbols = deposit locations; area proportional to estimate of total contained mass of metal (Mt = megatonnes); unknown deposit size given 2 Mt symbol; colour = ore body formation age (billion years); unknown age plotted in grey; circles = clastic-dominated lead-zinc (PbZn-CD); triangles = Mississippi Valley type lead-zinc (PbZn-MVT); squares = sedimentary copper (Cu-sed). (b) Associated CDFs for sediment-hosted deposits and random continental locations. (c-d) Same for the 3D2015-07Sv model.70 (e-f) Same for the CAM2016 model.71,72 (g-h) Same for the SLNAAFSA model, generated by blending regional updates from North America (SL2013NA73), Africa (AF201974), and South America (SA201975) into the global SL2013sv model.30 Note that CDFs for all tomography models show a significant difference from the distribution of random continental locations.

Supplementary information

Supplementary Information

Supplementary Discussion including equations, Figs. 1–33 and Tables 1–8.

Supplementary Data

Lithospheric thickness maps in netCDF, GeoTIFF and CSV format.

Supplementary Table 1

Compilation of base metal deposits.

Supplementary Table 2

Locations and mineral compositions for xenocryst/xenolith thermobarometry with optimal FITPLOT palaeogeotherms.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoggard, M.J., Czarnota, K., Richards, F.D. et al. Global distribution of sediment-hosted metals controlled by craton edge stability. Nat. Geosci. 13, 504–510 (2020). https://doi.org/10.1038/s41561-020-0593-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing