Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Abundant nitrite-oxidizing metalloenzymes in the mesopelagic zone of the tropical Pacific Ocean

Abstract

Numerous biogeochemical reactions occur within the oceans’ major oxygen minimum zones, but less attention has been paid to the open ocean extremities of these zones. Here we report measurements on oxygen minimum zone waters from the Eastern to the Central Tropical North Pacific, which we analysed using metaproteomic techniques to discern the microbial functions present and their influence on biogeochemical cycling. We found nitrite oxidoreductase—an iron-rich enzyme from Nitrospina bacteria—to be one of the most abundant microbial proteins present in the mesopelagic zone, with over 60 billion molecules per litre. Estimated reaction rates imply that this enzyme is undersaturated and that its high abundance provides a latent mesopelagic catalytic capacity to rapidly oxidize nitrite derived from episodic fluxes of degrading sinking organic matter. In addition, given the enzyme’s intensive iron demand, its high abundance represents a previously unrecognized microbial reservoir within suboxic mesopelagic zones. Nitrite oxidoreductase may also contribute to other reactions involving nitrogen and redox-sensitive metals. We suggest that the abundance and extent of nitrite oxidoreductase may increase with continued deoxygenation in the oceans, and result in increased mesopelagic demand for iron and other potential changes to marine biogeochemical cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Station locations, hydrographic features and Nxr distributions for the Metzyme and ProteOMZ expeditions.
Fig. 2: Abundant Nxr in the Central Pacific Ocean and in a Nitrospira culture.
Fig. 3: Targeted metaproteomic analyses of peptides from Nxr at Metzyme station 3.
Fig. 4: Nxr enzyme concentrations, iron use and estimated reaction rates based on targeted metaproteomic analyses.
Fig. 5: Nxr, oxygen and nitrous oxide in the Central Pacific OMZ.

Similar content being viewed by others

Data availability

Environmental data and processed global and targeted metaproteomic results from Metzyme and ProteOMZ expeditions are available at https://www.bco-dmo.org/ under projects 2236 and 685696 and dataset 806510, and the global metaproteomes can be explored through the Ocean Protein Portal (https://www.oceanproteinportal.org). The metagenomic assembly used for peptide-to-spectrum matching is available at NCBI under accession GCA_900411625. Targeted Nxr concentrations and NOB abundances are available within Supplementary Tables 9 and 8. Raw mass spectra are available in PRIDE and ProteomeXchange as project number PXD009712.

References

  1. Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem. Cycles 18, GB4028 (2004).

    Google Scholar 

  2. Voss, M. et al. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philos. Trans. R. Soc. B 368, 20130121 (2013).

    Google Scholar 

  3. Watson, S. W. & Waterbury, J. B. Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp. Arch. Mikrobiol. 77, 203–230 (1971).

    Google Scholar 

  4. Ward, B. B. et al. Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean. Deep Sea Res. I 55, 1672–1683 (2008).

    Google Scholar 

  5. Imlay, J. A. Iron-sulphur clusters and the problem with oxygen. Mol. Microbiol. 59, 1073–1082 (2006).

    Google Scholar 

  6. Hawley, A. K., Brewer, H. M., Norbeck, A. D., Paša-Tolić, L. & Hallam, S. J. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc. Natl Acad. Sci. USA 111, 11395–11400 (2014).

    Google Scholar 

  7. Lam, P. et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl Acad. Sci. USA 106, 4752–4757 (2009).

    Google Scholar 

  8. Ward, B., Glover, H. & Lipschultz, F. Chemoautotrophic activity and nitrification in the oxygen minimum zone off Peru. Deep Sea Res. A 36, 1031–1051 (1989).

    Google Scholar 

  9. McCormick, L. R. & Levin, L. A. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms. Philos. Trans. R. Soc. A 375, 20160322 (2017).

    Google Scholar 

  10. Beman, J. M. et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc. Natl Acad. Sci. USA 108, 208–213 (2010).

    Google Scholar 

  11. Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).

    Google Scholar 

  12. Keeling, R. F., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010).

    Google Scholar 

  13. Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).

    Google Scholar 

  14. Fu, W., Primeau, F., Moore, J. K., Lindsay, K. & Randerson, J. T. Reversal of increasing tropical ocean hypoxia trends with sustained climate warming. Global Biogeochem. Cycles 32, 551–564 (2018).

    Google Scholar 

  15. Orsi, W. D. et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 10, 2158–2173 (2016).

    Google Scholar 

  16. Rafter, P. A. & Sigman, D. M. Spatial distribution and temporal variation of nitrate nitrogen and oxygen isotopes in the upper equatorial Pacific Ocean. Limnol. Oceanogr. 61, 14–31 (2016).

    Google Scholar 

  17. Barber, R. T. et al. Primary productivity and its regulation in the equatorial Pacific during and following the 1991–1992 El Niño. Deep Sea Res. II 43, 933–969 (1996).

    Google Scholar 

  18. Coale, K. H., Fitzwater, S. E., Gordon, R. M., Johnson, K. S. & Barber, R. T. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature 379, 621–624 (1996).

    Google Scholar 

  19. Johnson, G. C., McPhaden, M. J. & Firing, E. Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling. J. Phys. Oceanogr. 31, 839–849 (2001).

    Google Scholar 

  20. Rafter, P. A., Sigman, D. M., Charles, C. D., Kaiser, J. & Haug, G. H. Subsurface tropical Pacific nitrogen isotopic composition of nitrate: biogeochemical signals and their transport. Global Biogeochem. Cycles 26, GB1003 (2012).

    Google Scholar 

  21. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles 11, 235–266 (1997).

    Google Scholar 

  22. Deutsch, C., Gruber, N., Key, R. M., Sarmiento, J. L. & Ganachaud, A. Denitrification and N2 fixation in the Pacific Ocean. Global Biogeochem. Cycles 15, 483–506 (2001).

    Google Scholar 

  23. Cline, J. & Kaplan, I. Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific Ocean. Mar. Chem. 3, 271–299 (1975).

    Google Scholar 

  24. Saito, M. A. et al. Needles in the blue sea: sub-species specificity in targeted protein biomarker analyses within the vast oceanic microbial metaproteome. Proteomics 15, 3521–3531 (2015).

    Google Scholar 

  25. Scott, K. B., Turko, I. V. & Phinney, K. W. Quantitative performance of internal standard platforms for absolute protein quantification using multiple reaction monitoring-mass spectrometry. Anal. Chem. 87, 4429–4435 (2015).

    Google Scholar 

  26. Lücker, S., Nowka, B., Rattei, T., Spieck, E. & Daims, H. The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front. Microbiol. 4, 27 (2013).

    Google Scholar 

  27. Santoro, A. E., Casciotti, K. L. & Francis, C. A. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ. Microbiol. 12, 1989–2006 (2010).

    Google Scholar 

  28. Füssel, J. et al. Nitrite oxidation in the Namibian oxygen minimum zone. ISME J. 6, 1200–1209 (2012).

    Google Scholar 

  29. Stewart, F. J., Ulloa, O. & DeLong, E. F. Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ. Microbiol. 14, 23–40 (2012).

    Google Scholar 

  30. Ngugi, D. K., Blom, J., Stepanauskas, R. & Stingl, U. Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of Red Sea brines. ISME J. 10, 1383–1399 (2016).

    Google Scholar 

  31. Spieck, E., Ehrich, S., Aamand, J. & Bock, E. Isolation and immunocytochemical location of the nitrite-oxidizing system in Nitrospira moscoviensis. Arch. Microbiol. 169, 225–230 (1998).

    Google Scholar 

  32. Saito, M. A. et al. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science 345, 1173–1177 (2014).

    Google Scholar 

  33. Yin, J., Overpeck, J., Peyser, C. & Stouffer, R. Big jump of record warm global mean surface temperature in 2014–2016 related to unusually large oceanic heat releases. Geophys. Res. Lett. 45, 1069–1078 (2018).

    Google Scholar 

  34. Meincke, M., Bock, E., Kastrau, D. & Kroneck, P. M. Nitrite oxidoreductase from Nitrobacter hamburgensis: redox centers and their catalytic role. Arch. Microbiol. 158, 127–131 (1992).

    Google Scholar 

  35. Ohnemus, D. C. et al. Elevated trace metal content of prokaryotic communities associated with marine oxygen deficient zones. Limnol. Oceanogr. 62, 3–25 (2017).

    Google Scholar 

  36. Collier, R. W. Molybdenum in the Northeast Pacific Ocean 1. Limnol. Oceanogr. 30, 1351–1354 (1985).

    Google Scholar 

  37. Santoro, A. et al. Measurements of nitrite production in and around the primary nitrite maximum in the central California Current. Biogeosciences 10, 7395–7410 (2013).

    Google Scholar 

  38. Spieck, E. et al. Two-dimensional structure of membrane-bound nitrite oxidoreductase from Nitrobacter hamburgensis. J. Struct. Biol. 117, 117–123 (1996).

    Google Scholar 

  39. Füssel, J. et al. Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus. Sci. Adv. 3, e1700807 (2017).

    Google Scholar 

  40. Lücker, S. et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc. Natl Acad. Sci. USA 107, 13479–13484 (2010).

  41. Buchwald, C. & Casciotti, K. L. Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite. Nat. Geosci. 6, 308–313 (2013).

    Google Scholar 

  42. Buchwald, C., Santoro, A. E., Stanley, R. H. & Casciotti, K. L. Nitrogen cycling in the secondary nitrite maximum of the eastern tropical North Pacific off Costa Rica. Global Biogeochem. Cycles 29, 2061–2081 (2015).

    Google Scholar 

  43. Rue, E. R., Smith, G. J., Cutter, G. A. & Bruland, K. W. The response of trace element redox couples to suboxic conditions in the water column. Deep Sea Res. II 44, 113–134 (1997).

    Google Scholar 

  44. Moffett, J. W., Goepfert, T. J. & Naqvi, S. W. A. Reduced iron associated with secondary nitrite maxima in the Arabian Sea. Deep Sea Res. I 54, 1341–1349 (2007).

    Google Scholar 

  45. Munson, K. M., Lamborg, C. H., Swarr, G. J. & Saito, M. A. Mercury species concentrations and fluxes in the Central Tropical Pacific Ocean. Global Biogeochem. Cycles 29, 656–676 (2015).

    Google Scholar 

  46. Jacob, J. et al. Oxidation kinetics and inverse isotope effect of marine nitrite-oxidizing isolates. Aquat. Microb. Ecol. 80, 289–300 (2017).

    Google Scholar 

  47. Nowka, B., Daims, H. & Spieck, E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl. Environ. Microbiol. 81, 745–753 (2015).

    Google Scholar 

  48. Santoro, A. E. et al. Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation. Limnol. Oceanogr. 62, 1984–2003 (2017).

    Google Scholar 

  49. Zakem, E. J. et al. Ecological control of nitrite in the upper ocean. Nat. Commun. 9, 1206 (2018).

    Google Scholar 

  50. Bristow, L. A. et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc. Natl Acad. Sci. USA 113, 10601–10606 (2016).

    Google Scholar 

  51. Granger, J. & Ward, B. B. Accumulation of nitrogen oxides in copper limited cultures of denitrifying bacteria. Limnol. Oceanogr. 48, 313–318 (2003).

    Google Scholar 

  52. Jacquot, J. E. et al. Assessment of the potential for copper limitation of ammonia oxidation by Archaea in a dynamic estuary. Mar. Chem. 162, 37–49 (2014).

    Google Scholar 

  53. Suzuki, I., Sugiyama, T. & Omata, T. Primary structure and transcriptional regulation of the gene for nitrite reductase from the cyanobacterium Synechococcus PCC 7942. Plant Cell Physiol. 34, 1311–1320 (1993).

    Google Scholar 

  54. Chisholm, S. W., Falkowski, P. & Cullen, J. J. Dis-crediting ocean fertilization. Science 294, 309–310 (2001).

    Google Scholar 

  55. Santoro, A. E., Buchwald, C., McIlvin, M. R. & Casciotti, K. L. Isotopic signature of N2O produced by marine ammonia-oxidizing archaea. Science 333, 1282–1285 (2011).

    Google Scholar 

  56. Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10, 757 (2014).

    Google Scholar 

  57. Brownridge, P. J., Harman, V. M., Simpson, D. M. & Beynon, R. J. in Quantitative Methods in Proteomics (ed. Marcus, K.) 267–293 (Springer, 2012).

  58. Saito, M. A. et al. Needles in the blue sea: sub-species specificity in targeted protein biomarker analyses within the vast oceanic microbial metaproteome. Proteomics 15, 3521–3531 (2015).

    Google Scholar 

  59. Lu, X. & Zhu, H. Tube-gel digestion. Mol. Cell. Proteom. 4, 1948–1958 (2006).

    Google Scholar 

  60. Tanaka, Y., Fukumori, Y. & Yamanaka, T. Purification of cytochrome a 1c 1 from Nitrobacter agilis and characterization of nitrite oxidation system of the bacterium. Arch. Microbiol. 135, 265–271 (1983).

  61. Dupont, C. L. et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9, 1076–1092 (2015).

    Google Scholar 

  62. Sigman, D. et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73, 4145–4153 (2001).

    Google Scholar 

  63. Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K. & Hilkert, A. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 74, 4905–4912 (2002).

    Google Scholar 

  64. Noble, A. E. et al. Basin-scale inputs of cobalt, iron, and manganese from the Benguela-Angola front into the South Atlantic Ocean. Limnol. Oceanogr. 57, 989–1010 (2012).

    Google Scholar 

  65. Hawco, N. J., Ohnemus, D. C., Resing, J. A., Twining, B. S. & Saito, M. A. A dissolved cobalt plume in the oxygen minimum zone of the eastern tropical South Pacific. Biogeosciences 13, 5697–5717 (2016).

    Google Scholar 

  66. Westley, M. B., Yamagishi, H., Popp, B. N. & Yoshida, N. Nitrous oxide cycling in the Black Sea inferred from stable isotope and isotopomer distributions. Deep Sea Res. II 53, 1802–1816 (2006).

    Google Scholar 

Download references

Acknowledgements

We thank the captain and crews of the RV Kilo Moana and RV Falkor for their assistance. We appreciate the sampling assistance from T. Goepfert, N. Held, N. Hawco, T. Horner, C. Hau, and D. Wang. Metagenome and N. marina sequencing was provided by the Department of Energy Joint Genome Institute. Time aboard the RV Falkor was provided by the Schmidt Ocean Institute. Funding for this research in the Saito laboratory was provided by the Gordon and Betty Moore Foundation (3782) and the National Science Foundation (OCE-1031271, 1736599, 1657766, 1850719, 1924554). J.K.S. was supported by the NASA Postdoctoral Fellowship Program. A.E.S. was supported by the Sloan Foundation, the Simons Foundation and United States National Science Foundation award OCE-1437310. A portion of this research used resources at the DOE Joint Genome Institute sponsored by the Office of Biological and Environmental Research and operated under contract DE-AC02-05CH11231 (JGI). C.L.D. and D.K. were supported by NSF grant OCE-1259994.

Author information

Authors and Affiliations

Authors

Contributions

M.A.S. led field expeditions, collected samples, analysed datasets and wrote the manuscript. M.R.M. analysed samples by mass spectrometry and developed targeted proteomic assays. D.M.M. collected and extracted metaproteomic samples. A.E.S. participated in the expeditions, contributed to interpretations, measured NOB abundances, cultured Nb-295 and edited the manuscript. C.L.D. analysed metagenomics datasets, provided metagenomic assemblies and contributed to the manuscript. P.A.R. analysed 15N-NO3 samples and contributed to the manuscript discussion. J.K.S. contributed to metaproteomic informatic analyses and manuscript interpretations. D.K. contributed to metagenomic informatic analyses. M.W. contributed N2O and nitrite data from KM0405. C.H.L. co-led the Metzyme field expedition, collected samples and contributed to the manuscript discussions. J.B.W. and F.V. contributed to nitrifier culture experiments and manuscript discussions.

Corresponding author

Correspondence to Mak A. Saito.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Rebecca Neely.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–9, Figs. 1–28 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, M.A., McIlvin, M.R., Moran, D.M. et al. Abundant nitrite-oxidizing metalloenzymes in the mesopelagic zone of the tropical Pacific Ocean. Nat. Geosci. 13, 355–362 (2020). https://doi.org/10.1038/s41561-020-0565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-020-0565-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing