Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Iron isotope fractionation at the core–mantle boundary by thermodiffusion


The D” layer at the base of the Earth’s mantle exhibits anomalous seismic properties, which are attributed to heat loss from and chemical interaction with the underlying molten Fe-rich outer core. Here we show that mass transfer due to temperature variations within the D” layer could lead to resolvable fractionation of iron isotopes. We constrain the degree of isotope fractionation by experiments on core-forming Fe alloy liquids at 2100–2300 K and 2 GPa, which demonstrate that heavy Fe isotopes preferentially migrate towards lower temperature and vice versa. We find that this isotope fractionation occurs rapidly due to the high mobility of iron, which reaches 0.013 ± 0.002‰ (2σ) per degree per amu at steady state. Numerical simulations of mantle convection capturing the evolution of a basal thermal boundary layer show that iron isotope fractionation immediately above the core–mantle boundary can reach measurable levels on geologic timescales and that plumes can entrain this fractionated material into the convecting mantle. We suggest that such a process may contribute to the heavy Fe isotope composition of the upper mantle inferred from mantle melts (basalts) and residues (peridotites) relative to chondrites. That being the case, non-traditional stable isotope systems such as Fe may constrain the interactions between the core and mantle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: δ57Fe (in per mil) versus temperature (in K) for experiments reaching steady-state isotope fractionation by thermodiffusion.
Fig. 2: Solutions to the Chapman–Enskog relation for Fe isotopes for steady-state experiments.
Fig. 3: Observations compared with predictions from the ASPECT simulation for thermodiffusion in the thermal boundary layer above the CMB.

Data availability

All data generated during this study are included in this article and its supplementary information and supplementary data files.

Code availability

The version of ASPECT we used to compute the geodynamic models is available online (, and all input files required to reproduce our computations, together with instructions for how to run them, are provided in a separate repository (


  1. 1.

    Boehler, R., Chopelas, A. & Zerr, A. Temperature and chemistry of the core–mantle boundary. Chem. Geol. 120, 199–205 (1995).

    Article  Google Scholar 

  2. 2.

    Lay, T., Hernlund, J., Garnero, E. J. & Thorne, M. A post-perovskite lens and D” heat flux beneath the central Pacific. Science 314, 1272–1276 (2006).

    Article  Google Scholar 

  3. 3.

    Kawai, K. & Tsuchiya, T. Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling. Proc. Natl Acad. Sci. USA 106, 22119–22123 (2009).

    Article  Google Scholar 

  4. 4.

    Brown, S. P., Thorne, M. S., Miyagi, L. & Rost, S. A compositional origin to ultralow-velocity zones. Geophys. Res. Lett. 42, 1039–1045 (2015).

    Article  Google Scholar 

  5. 5.

    Knittle, E. & Jeanloz, R. Earth’s core–mantle boundary: results of experiments at high pressures and temperatures. Science 251, 1438–1443 (1991).

    Article  Google Scholar 

  6. 6.

    Williams, Q. & Garnero, E. J. Seismic evidence for partial melt at the base of Earth’s mantle. Science 273, 1528–1530 (1996).

    Article  Google Scholar 

  7. 7.

    Lay, T., Garnero, E. J. & Williams, Q. Partial melting in a thermo-chemical boundary layer at the base of the mantle. Phys. Earth Planet. Inter. 146, 441–467 (2004).

    Article  Google Scholar 

  8. 8.

    Zhang, Z. et al. Primordial metallic melt in the deep mantle. Geophys. Res. Lett. 43, 3693–3699 (2016).

    Article  Google Scholar 

  9. 9.

    Hayden, L. A. & Watson, E. B. A diffusion mechanism for core–mantle interaction. Nature 450, 709–711 (2007).

    Article  Google Scholar 

  10. 10.

    Crispin, K. L., Saha, S., Morgan, D. & Van Orman, J. A. Diffusion of transition metals in periclase by experiment and first-principles, with implications for core–mantle equilibration during metal percolation. Earth Planet. Sci. Lett. 357–358, 42–53 (2012).

    Article  Google Scholar 

  11. 11.

    Poirier, J.-P. Core-infiltrated mantle and the nature of the D” layer. J. Geomagn. Geoelectr. 45, 1221–1227 (1993).

    Article  Google Scholar 

  12. 12.

    Goarant, F., Guyot, F., Peyronneau, J. & Poirier, J.-P. High‐pressure and high‐temperature reactions between silicates and liquid iron alloys, in the diamond anvil cell, studied by analytical electron microscopy. J. Geophys. Res. 97, 4477–4487 (1992).

    Article  Google Scholar 

  13. 13.

    Shi, C. Y. et al. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions. Nat. Geosci. 6, 971–975 (2013).

    Article  Google Scholar 

  14. 14.

    Otsuka, K. & Karato, S.-I. Deep penetration of molten iron into the mantle caused by a morphological instability. Nature 492, 243–246 (2012).

    Article  Google Scholar 

  15. 15.

    Kanda, R. V. S. & Stevenson, D. J. Suction mechanism for iron entrainment into the lower mantle. Geophys. Res. Lett. 33, L02310 (2006).

    Article  Google Scholar 

  16. 16.

    Jones, T. D., Davies, D. R. & Sossi, P. A. Tungsten isotopes in mantle plumes: heads it’s positive, tails it’s negative. Earth Planet. Sci. Lett. 506, 255–267 (2019).

    Article  Google Scholar 

  17. 17.

    Humayun, M. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306, 91–94 (2004).

    Article  Google Scholar 

  18. 18.

    Brandon, A. D. & Walker, R. J. The debate over core–mantle interaction. Earth Planet. Sci. Lett. 232, 211–225 (2005).

    Article  Google Scholar 

  19. 19.

    Bouhifd, M. A., Jephcoat, A. P., Heber, V. S. & Kelley, S. K. N. Helium in Earth’s early core. Nat. Geosci. 6, 982–986 (2013).

    Article  Google Scholar 

  20. 20.

    Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

    Article  Google Scholar 

  21. 21.

    Rizo, H. et al. 182W evidence for core–mantle interaction in the source of mantle plumes. Geochem. Perspect. Lett. 11, 6–11 (2019).

    Article  Google Scholar 

  22. 22.

    Konter, J. G. et al. Unusual δ56Fe values in Samoan rejuvenated lavas generated in the mantle. Earth Planet. Sci. Lett. 450, 221–232 (2016).

    Article  Google Scholar 

  23. 23.

    Poitrasson, F., Halliday, A. N., Lee, D.-C., Levasseur, S. & Teutsch, N. Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth Planet. Sci. Lett. 223, 253–266 (2004).

    Article  Google Scholar 

  24. 24.

    Williams, H. M. et al. Fractionation of oxygen and iron isotopes by partial melting processes: implications for the interpretation of stable isotope signatures in mafic rocks. Earth Planet. Sci. Lett. 283, 156–166 (2009).

    Article  Google Scholar 

  25. 25.

    Williams, H. M. Iron isotope fractionation and the oxygen fugacity of the mantle. Science 304, 1656–1659 (2004).

    Article  Google Scholar 

  26. 26.

    Williams, H. M. & Bizimis, M. Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts. Earth Planet. Sci. Lett. 404, 396–407 (2014).

    Article  Google Scholar 

  27. 27.

    Craddock, P. R., Warren, J. M. & Dauphas, N. Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth Planet. Sci. Lett. 365, 63–76 (2013).

    Article  Google Scholar 

  28. 28.

    Sossi, P. A., Nebel, O. & Foden, J. Iron isotope systematics in planetary reservoirs. Earth Planet. Sci. Lett. 452, 295–308 (2016).

    Article  Google Scholar 

  29. 29.

    Poitrasson, F., Roskosz, M. & Corgne, A. No iron isotope fractionation between molten alloys and silicate melt to 2000 °C and 7.7 GPa: experimental evidence and implications for planetary differentiation and accretion. Earth Planet. Sci. Lett. 278, 376–385 (2009).

    Article  Google Scholar 

  30. 30.

    Hin, R. C. & Schmidt, M. W. & Bourdon, B. Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1 GPa and 1250–1300 °C and its cosmochemical consequences. Geochim. Cosmochim. Acta 93, 164–181 (2012).

    Article  Google Scholar 

  31. 31.

    Shahar, A. et al. Sulfur-controlled iron isotope fractionation experiments of core formation in planetary bodies. Geochim. Cosmochim. Acta 150, 253–264 (2015).

    Article  Google Scholar 

  32. 32.

    Elardo, S. M. & Shahar, A. Non-chondritic iron isotope ratios in planetary mantles as a result of core formation. Nat. Geosci. 10, 317–321 (2017).

    Article  Google Scholar 

  33. 33.

    Liu, J. et al. Iron isotopic fractionation between silicate mantle and metallic core at high pressure. Nat. Commun. 8, 14377 (2017).

    Article  Google Scholar 

  34. 34.

    Kyser, T. K., Lesher, C. E. & Walker, D. The effects of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids. Contrib. Mineral. Petrol. 133, 373–381 (1998).

    Article  Google Scholar 

  35. 35.

    Richter, F. M. et al. Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochim. Cosmochim. Acta 73, 4250–4263 (2009).

    Article  Google Scholar 

  36. 36.

    Huang, F. et al. Isotope fractionation in silicate melts by thermal diffusion. Nature 464, 396–400 (2010).

    Article  Google Scholar 

  37. 37.

    Brenan, J. M. & Bennett, N. Soret separation of highly siderophile elements in Fe–Ni–S melts: implications for solid metal–liquid metal partitioning. Earth Planet. Sci. Lett. 298, 299–305 (2010).

    Article  Google Scholar 

  38. 38.

    Dobson, D. P. Self-diffusion in liquid Fe at high pressure. Phys. Earth Planet. Inter. 130, 271–284 (2002).

    Article  Google Scholar 

  39. 39.

    Lacks, D. J. et al. Isotope fractionation by thermal diffusion in silicate melts. Phys. Rev. Lett. 108, 065901 (2012).

    Article  Google Scholar 

  40. 40.

    Kincaid, J. M., Cohen, E. G. D. & de Haro, M. L. The Enskog theory for multicomponent mixtures. IV. Thermal diffusion. J. Chem. Phys. 86, 963–975 (1998).

    Article  Google Scholar 

  41. 41.

    Alfè, D. & Kresse, G. Structure and dynamics of liquid iron under Earth’s core conditions. Phys. Rev. B 61, 132–142 (2000).

    Article  Google Scholar 

  42. 42.

    Buffett, B. A. & Seagle, C. T. Stratification of the top of the core due to chemical interactions with the mantle. J. Geophys. Res. 115, B04407 (2010).

    Article  Google Scholar 

  43. 43.

    Morgan, J. P., Hasenclever, J. & Shi, C. New observational and experimental evidence for a plume-fed asthenosphere boundary layer in mantle convection. Earth Planet. Sci. Lett. 366, 99–111 (2013).

    Article  Google Scholar 

  44. 44.

    Heister, T., Dannberg, J., Gassmöller, R. & Bangerth, W. High accuracy mantle convection simulation through modern numerical methods—II: realistic models and problems. Geophys. J. Int. 210, 833–851 (2017).

    Article  Google Scholar 

  45. 45.

    Bangerth, W. et al. ASPECT: Advanced Solver for Problems in Earth’s ConvecTion, User Manual Computational Infrastructure for Geodynamics (accessed 11 February 2020).

Download references


This work was supported by NSF EAR-1019887 and the Danish National Research Foundation–Niels Bohr Professorship (26-123/8) to C.E.L., by NSF EAR-1250331 to D.J.L. and NSERC Discovery Grants to J.M.B. J.D. was partially supported by the Computational Infrastructure for Geodynamics initiative through NSF EAR-0949446, NSF EAR-1550901 and the Deep Carbon Observatory. The authors acknowledge the Texas Advanced Computing Center, University of Texas at Austin, for providing high-performance computing resources. We thank P. Sossi for very constructive comments and suggestions that helped improve the presentation.

Author information




This project was conceived and managed by C.E.L. N.R.B. and J.M.B. conducted experiments, G.H.B., J.J.G.G. and C.E.L. performed analyses and J.D. developed the ASPECT code, executed the simulations and documented the modelling effort presented in the Supplementary Information. D.J.L. contributed to the theoretical underpinnings of the kinetic theory of thermodiffusion. C.E.L. drafted the manuscript. All authors contributed to interpretations and revisions of the manuscript.

Corresponding author

Correspondence to Charles E. Lesher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editors: Tamara Goldin; Stefan Lachowycz.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–10 and Tables 1–3.

Supplementary Data 4

ASPECT model output for plotting.

Supplementary Data 5

ASPECT model output for plotting.

Supplementary Data 7

ASPECT model output for plotting.

Supplementary Data 8

ASPECT model output for plotting.

Supplementary Data 10

ASPECT model output for plotting.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lesher, C.E., Dannberg, J., Barfod, G.H. et al. Iron isotope fractionation at the core–mantle boundary by thermodiffusion. Nat. Geosci. 13, 382–386 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing