Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event

Abstract

The approximately 2,220–2,060 million years old Lomagundi–Jatuli Event was the longest positive carbon isotope excursion in Earth history and is traditionally interpreted to reflect an increased organic carbon burial and a transient rise in atmospheric O2. However, it is widely held that O2 levels collapsed for more than a billion years after this. Here we show that black shales postdating the Lomagundi–Jatuli Event from the approximately 2,000 million years old Zaonega Formation contain the highest redox-sensitive trace metal concentrations reported in sediments deposited before the Neoproterozoic (maximum concentrations of Mo = 1,009 μg g−1, U = 238 μg g−1 and Re = 516 ng g−1). This unit also contains the most positive Precambrian shale U isotope values measured to date (maximum 238U/235U ratio of 0.79‰), which provides novel evidence that there was a transition to modern-like biogeochemical cycling during the Palaeoproterozoic. Although these records do not preclude a return to anoxia during the Palaeoproterozoic, they uniquely suggest that the oceans remained well-oxygenated millions of years after the termination of the Lomagundi–Jatuli Event.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Lithology and geochemistry of the ZF.
Fig. 2: Secular trends in RSE concentrations from anoxic shales.

Data availability

The novel ZF geochemical data presented here will be available in the PANGAEA data repository at https://doi.org/10.1594/PANGAEA.911670 (drill cores OnZaP-1 and 355) and https://doi.org/10.1594/PANGAEA.911674 (drill core OPH56). Geochemical Source Data and raw images for Supplementary Figures are available at figshare (https://doi.org/10.6084/m9.figshare.11674056/). Source Data for Figs. 1 and 2 are available as Source Data files.

References

  1. 1.

    Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise of atmospheric oxygen. Geology 24, 867–870 (1996).

    Google Scholar 

  2. 2.

    Martin, A. P., Condon, D. J., Prave, A. R. & Lepland, A. A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli Event). Earth-Sci. Rev. 127, 242–261 (2013).

    Google Scholar 

  3. 3.

    Bekker, A. & Holland, H. D. Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet. Sci. Lett. 317–318, 295–304 (2012).

    Google Scholar 

  4. 4.

    Planavsky, N. J., Bekker, A., Hofmann, A., Owens, J. D. & Lyons, T. W. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc. Natl Acad. Sci. USA 109, 18300–18305 (2012).

    Google Scholar 

  5. 5.

    Scott, C. et al. Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir. Earth Planet. Sci. Lett. 389, 95–104 (2014).

    Google Scholar 

  6. 6.

    Blättler, C. L. et al. Two-billion-year-old evaporites capture Earth’s great oxidation. Science 360, 320–323 (2018).

    Google Scholar 

  7. 7.

    Konhauser, K. O. et al. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478, 369–373 (2011).

    Google Scholar 

  8. 8.

    Partin, C. A. et al. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet. Sci. Lett. 369–370, 284–293 (2013).

    Google Scholar 

  9. 9.

    Kipp, M. A., Stüeken, E. E., Bekker, A. & Buick, R. Selenium isotopes record extensive marine suboxia during the Great Oxidation Event. Proc. Natl Acad. Sci. USA 114, 875–880 (2017).

    Google Scholar 

  10. 10.

    Sheen, A. I. et al. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia. Geochim. Cosmochim. Acta 227, 75–95 (2018).

    Google Scholar 

  11. 11.

    Canfield, D. E. et al. Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere. Proc. Natl Acad. Sci. USA 110, 16736–16741 (2013).

    Google Scholar 

  12. 12.

    Bachan, A. & Kump, L. R. The rise of oxygen and siderite oxidation during the Lomagundi Event. Proc. Natl Acad. Sci. USA 112, 6562–6567 (2015).

    Google Scholar 

  13. 13.

    Miyazaki, Y., Planavsky, N., Bolton, E. W. & Reinhard, C. T. Making sense of massive carbon isotope excursions with an inverse carbon cycle model. J. Geophys. Res. Biogeosci. 123, 2485–2496 (2018).

    Google Scholar 

  14. 14.

    Melezhik, V. A., Fallick, A. E., Medvedev, P. V. & Makarikhin, V. V. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-`red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment. Earth-Sci. Rev. 48, 71–120 (1999).

    Google Scholar 

  15. 15.

    Eguchi, J., Seales, J. & Dasgupta, R. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nat. Geosci. 13, 71–76 (2020).

    Google Scholar 

  16. 16.

    Martin, A. P. et al. Multiple Palaeoproterozoic carbon burial episodes and excursions. Earth Planet. Sci. Lett. 424, 226–236 (2015).

    Google Scholar 

  17. 17.

    Melezhik, V. A., Fallick, A. E., Brasier, A. T. & Lepland, A. Carbonate deposition in the Palaeoproterozoic Onega basin from Fennoscandia: a spotlight on the transition from the Lomagundi–Jatuli to Shunga events. Earth Sci. Rev. 147, 65–98 (2015).

    Google Scholar 

  18. 18.

    Kreitsmann, T. et al. Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia—implications for the preservation of primary C isotope signals. Chem. Geol. 512, 43–57 (2019).

    Google Scholar 

  19. 19.

    Sadler, P. M. The influence of hiatuses on sediment accumulation rates. GeoRes. Forum 5, 15–40 (1999).

    Google Scholar 

  20. 20.

    Böning, P. et al. Geochemistry of Peruvian near-surface sediments. Geochim. Cosmochim. Acta 68, 4429–4451 (2004).

    Google Scholar 

  21. 21.

    Reinhard, C. T. et al. Proterozoic ocean redox and biogeochemical stasis. Proc. Natl Acad. Sci. USA 110, 5357–5362 (2013).

    Google Scholar 

  22. 22.

    Wang, X. et al. A Mesoarchean shift in uranium isotope systematics. Geochim. Cosmochim. Acta 238, 438–452 (2018).

    Google Scholar 

  23. 23.

    Yang, S., Kendall, B., Lu, X., Zhang, F. & Zheng, W. Uranium isotope compositions of mid-Proterozoic black shales: evidence for an episode of increased ocean oxygenation at 1.36 Ga and evaluation of the effect of post-depositional hydrothermal fluid flow. Precambrian Res. 298, 187–201 (2017).

    Google Scholar 

  24. 24.

    Dunk, R. M., Mills, R. A. & Jenkins, W. J. A reevaluation of the oceanic uranium budget for the Holocene. Chem. Geol. 190, 45–67 (2002).

    Google Scholar 

  25. 25.

    Miller, C. A., Peucker-Ehrenbrink, B., Walker, B. D. & Marcantonio, F. Re-assessing the surface cycling of molybdenum and rhenium. Geochim. Cosmochim. Acta 75, 7146–7179 (2011).

    Google Scholar 

  26. 26.

    Crusius, J., Calvert, S., Pedersen, T. & Sage, D. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett. 145, 65–78 (1996).

    Google Scholar 

  27. 27.

    Anderson, R. F., Fleisher, M. Q. & LeHuray, A. P. Concentration, oxidation state, and particulate flux of uranium in the Black Sea. Geochim. Cosmochim. Acta 53, 2215–2224 (1989).

    Google Scholar 

  28. 28.

    Algeo, T. J. & Lyons, T. W. Mo–total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21, PA1016 (2006).

    Google Scholar 

  29. 29.

    Helz, G. R. et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim. Cosmochim. Acta 60, 3631–3642 (1996).

    Google Scholar 

  30. 30.

    Kendall, B., Dahl, T. W. & Anbar, A. D. The stable isotope geochemistry of molybdenum. Rev. Mineral. Geochem. 82, 683–732 (2017).

    Google Scholar 

  31. 31.

    Andersen, M. B., Stirling, C. H. & Weyer, S. Uranium isotope fractionation. Rev. Mineral. Geochem. 82, 799–850 (2017).

    Google Scholar 

  32. 32.

    Dickson, A. J. A molybdenum-isotope perspective on Phanerozoic deoxygenation events. Nat. Geosci. 10, 721–726 (2017).

    Google Scholar 

  33. 33.

    Tribovillard, N., Algeo, T. J., Lyons, T. & Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol. 232, 12–32 (2006).

    Google Scholar 

  34. 34.

    Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth-Sci. Rev. 110, 26–57 (2012).

    Google Scholar 

  35. 35.

    Föllmi, K. B. et al. Phosphogenesis and organic-carbon preservation in the Miocene Monterey Formation at Naples Beach, California—the Monterey hypothesis revisited. Bull. Geol. Soc. Am. 117, 589–619 (2005).

    Google Scholar 

  36. 36.

    Andersen, M. B. et al. A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox. Earth Planet. Sci. Lett. 400, 184–194 (2014).

    Google Scholar 

  37. 37.

    Barnes, C. E. & Cochran, J. K. Uranium geochemistry in estuarine sediments: controls on removal and release processes. Geochim. Cosmochim. Acta 57, 555–569 (1993).

    Google Scholar 

  38. 38.

    Kump, L. R. et al. Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event. Science 334, 1694–1696 (2011).

    Google Scholar 

  39. 39.

    Qu, Y., Črne, A. E., Lepland, A. & van Zuilen, M. A. Methanotrophy in a Paleoproterozoic oil field ecosystem, Zaonega Formation, Karelia, Russia. Geobiology 10, 467–478 (2012).

    Google Scholar 

  40. 40.

    Paiste, K. et al. Multiple sulphur isotope records tracking basinal and global processes in the 1.98 Ga Zaonega Formation, NW Russia. Chem. Geol. 499, 151–164 (2018).

    Google Scholar 

  41. 41.

    Asael, D. et al. Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during the Paleoproterozoic Shunga Event. Chem. Geol. 362, 193–210 (2013).

    Google Scholar 

  42. 42.

    Asael, D., Rouxel, O., Poulton, S. W., Lyons, T. W. & Bekker, A. Molybdenum record from black shales indicates oscillating atmospheric oxygen levels in the early Paleoproterozoic. Am. J. Sci. 318, 275–299 (2018).

    Google Scholar 

  43. 43.

    Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).

    Google Scholar 

  44. 44.

    Lepland, A. et al. Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis. Nat. Geosci. 7, 20–24 (2014).

    Google Scholar 

  45. 45.

    Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).

    Google Scholar 

  46. 46.

    Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556 (2018).

    Google Scholar 

  47. 47.

    Kasting, J. F. & Canfield, D. E. in Fundamentals of Geobiology (eds Knoll, A. H., Canfield, D. E. & Konhauser, K. O.) 93–104 (John Wiley & Sons, 2012).

  48. 48.

    McLennan, S. M. Relationships between the trace element composition of sedimentary rocks and upper continental crust: trace element composition and upper continental crust. Geochem. Geophys. Geosyst. 2, 1021 (2001).

    Google Scholar 

  49. 49.

    Karhu, J. A. in Encyclopedia of Geochemistry (eds Marshall, C. P. & Fairbridge, R. W.) 67–73 (Kluwer Academic Publishers, 1999).

  50. 50.

    Robbins, L. J. et al. Trace elements at the intersection of marine biological and geochemical evolution. Earth-Sci. Rev. 163, 323–348 (2016).

    Google Scholar 

  51. 51.

    Melezhik, V. A., Fallick, A. E., Filippov, M. M. & Larsen, O. Karelian shungite—an indication of 2.0-Ga-old metamorphosed oil-shale and generation of petroleum: geology, lithology and geochemistry. Earth-Sci. Rev. 47, 1–40 (1999).

    Google Scholar 

  52. 52.

    Paiste, K. Reconstructing the Paleoproterozoic Sulfur Cycle: Insights from the Multiple Sulfur Isotope Record of the Zaonega Formation, Karelia, Russia. PhD thesis, Univ. Tromsø (2018).

  53. 53.

    Siebert, C., Nägler, T. F. & Kramers, J. D. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochem. Geophys. Geosyst. 2, 1032 (2001).

    Google Scholar 

  54. 54.

    Nägler, T. F. et al. Proposal for an international molybdenum isotope measurement standard and data representation. Geostand. Geoanal. Res. 38, 149–151 (2014).

    Google Scholar 

  55. 55.

    Mänd, K. et al. Trace Metal Concentrations and Isotope Compositions from Drill Core OnZaP of the Zaonega Formation, NW-Russia (PANGAEA, 2020); https://doi.org/10.1594/PANGAEA.911670

  56. 56.

    Mänd, K. et al. Trace Metal Concentrations and Isotope Compositions from Drill Core OPH of the Zaonega Formation, NW-Russia (PANGAEA, 2020); https://doi.org/10.1594/PANGAEA.911674

Download references

Acknowledgements

E. Ponzevera, A. De Prunelé, M. L. Rouget, C. Liorzou, K. von Gunten and F. Zhang are thanked for help with trace element and isotope analyses. K.M., K.K., A.L., T.K., P.P. and K.P. were supported by Estonian Research Council grant PRG447. K.M. was further supported by the Ministry of Education and Research of Estonia mobility grant within Archimedes Foundation’s The Kristjan Jaak Scholarship program ‘Doctoral Study Abroad’; K.P. was supported by the Research Council of Norway through its Centres of Excellence funding scheme grant no. 223259; A.E.R. acknowledges support from the state assignment of IG KarRC RAS; N.J.P. and C.T.R. acknowledge support from the NASA Alternative Earths Astrobiology Institute; K.O.K. was supported by a Natural Sciences and Engineering Research Council of Canada Discovery grant (RGPIN-165831).

Author information

Affiliations

Authors

Contributions

A.L., K.K., K.O.K., S.V.L. and K.M. conceived the study. K.M., K.P., T.K., A.E.R., K.K. and A.L. conducted the field studies and organized the sample acquisition. K.P., T.K., A.E.R., K.K. and A.L. provided the geological and sedimentary background. K.P. provided additional TOC data. K.M., L.J.R., S.V.L., M.T., P.P., C.T.R., K.L., A.V. and K.O.K. measured and interpreted the trace metal abundance data. M.T., S.V.L. and K.M. analysed and interpreted the Mo isotope data. N.J.P., L.J.R. and K.M. analysed and interpreted the U isotope data. S.V.L., T.K., P.P. and K.K. analysed and interpreted the in situ trace metal abundance. K.M. wrote the manuscript with input from all the co-authors.

Corresponding author

Correspondence to Kaarel Mänd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor: Rebecca Neely.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Discussion and Methods.

Source data

Source Data Fig. 1

Geochemical Source Data.

Source Data Fig. 2

Geochemical Source Data.

Source Data Supplementary Fig. S1

Geographical Data.

Source Data Supplementary Fig. S2

Geochemical Source Data.

Source Data Supplementary Fig. S3

Geochemical Source Data.

Source Data Supplementary Fig. S4

Geochemical Source Data.

Source Data Supplementary Fig. S5

Geochemical Source Data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mänd, K., Lalonde, S.V., Robbins, L.J. et al. Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event. Nat. Geosci. 13, 302–306 (2020). https://doi.org/10.1038/s41561-020-0558-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing