Abstract
During terrestrial differentiation, the relatively small amount of phosphorus that migrated to the lithosphere was incorporated into igneous rock, predominantly in the form of basic calcium orthophosphate (Ca10(PO4)6(OH,F,Cl)2, apatite). Yet the highly insoluble nature of calcium apatite presents a significant problem to those contemplating the origin of life given the foundational role of phosphate (PO43−) in extant biology and the apparent requirement for PO43− as a catalyst, buffer and reagent in prebiotic chemistry. Reduced meteorites such as enstatite chondrites are highly enriched in phosphide minerals, and upon reaction with water these minerals can release phosphorus species of various oxidation states. Here, we demonstrate how reduced phosphorus species can be fully oxidized to PO43− simply by the action of ultraviolet light on H2S/HS−. We used low-pressure Hg lamps to simulate ultraviolet output from the young Sun and 31P nuclear magnetic resonance spectroscopy to monitor the progress of reactions. Our experimental findings provide a cosmochemically and geochemically plausible means for supply of PO43− that was widely available to prebiotic chemistry and nascent life on early Earth and potentially on other planets.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The authors declare that all data associated and supporting this study are available in the published article and Supplementary information. We have chosen not to make the data available in a publicly accessible repository at this time.
References
Ritson, D. J. & Sutherland, J. D. Synthesis of aldehydic ribonucleotide and amino acid precursors by photoredox chemistry. Angew. Chem. Int. Ed. Engl. 52, 5845–5847 (2013).
Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).
Sutherland, J. D. The origin of life—out of the blue. Angew. Chem. Int. Ed. Engl. 55, 104–121 (2016).
Mariani, A., Russell, D. A., Javelle, T. & Sutherland, J. D. A light-releasable potentially prebiotic nucleotide activating agent. J. Am. Chem. Soc. 140, 8657–8661 (2018).
Ritson, D. J., Battilocchio, C., Ley, S. V. & Sutherland, J. D. Mimicking the surface and prebiotic chemistry of early Earth using flow chemistry. Nat. Commun. 9, 1821 (2018).
Becker, S. et al. Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat. Commun. 9, 163 (2018).
Becker, S. et al. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 366, 76–82 (2019).
Pasek, M. A. & Lauretta, D. S. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 5, 515–535 (2005).
Bryant, D. E. & Kee, T. P. Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-Phosphinic acid from the Nantan meteorite. Chem. Commun. 2344–2346 (2006).
Pasek, M. A., Dworkin, J. P. & Lauretta, D. S. A Radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim. Cosmochim. Acta 71, 1721–1736 (2007).
Bryant, D. E. et al. Electrochemical studies of iron meteorites: phosphorus redox chemistry on the early Earth. Int. J. Astrobiol. 8, 27–36 (2009).
Bryant, D. E. et al. Hydrothermal modification of the Sikhote-Alin iron meteorite under low pH geothermal environments. A plausibly prebiotic route to activated phosphorus on the early Earth. Geochim. Cosmochim. Acta 109, 90–112 (2013).
de Graaf, R. M., Visscher, J. & Schwartz, A. W. A plausibly prebiotic synthesis of phosphonic acids. Nature 378, 474–477 (1995).
Schwartz, A. W. & van der Veen, M. Synthesis of hypophosphate by ultraviolet irradiation of phosphite solutions. Inorg. Nucl. Chem. Lett. 9, 39–41 (1973).
Ranjan, S. & Sasselov, D. D. Influence of the UV environment on the synthesis of prebiotic molecules. Astrobiology 16, 68–88 (2016).
Rimmer, P. B. et al. The origin of RNA precursors on exoplanets. Sci. Adv. 4, eaar3302 (2018).
Volman, D. H., Wolstenholme, J. & Hadley, S. G. Photochemical formation of free radicals from hydrogen sulfide, mercaptans, and cysteine. J. Phys. Chem. 71, 1798–1803 (1967).
Das, T. N., Huie, R. E., Neta, P. & Padmaja, S. Reduction potential of the sulfhydryl radical: pulse radiolysis and laser flash photolysis studies of the formation and reactions of •SH and HSSH•− in aqueous solutions. J. Phys. Chem. A 103, 5221–5226 (1999).
Sauer, M. C., Crowell, R. A. & Shkrob, I. A. Electron photodetachment from aqueous anions. 1. Quantum yields for generation of hydrated electron by 193 and 248 nm laser photoexcitation of miscellaneous inorganic anions. J. Phys. Chem. A 108, 5490–5502 (2004).
Hart, E. J., Gordon, S. & Fielden, E. M. Reaction of the hydrated electron with water. J. Phys. Chem. 70, 150–156 (1966).
Karmann, W., Meissner, G. & Henglein, A. Pulsradiolyse des schwefelwasserstoffs in wäßriger lösung. Z. Naturforsch. B 22, 273–282 (1967).
Ritson, D. J., Xu, J. & Sutherland, J. D. Thiophosphate—a versatile prebiotic reagent? Synlett 28, 64–67 (2017).
Kaasalainen, H. & Stefánsson, A. Sulfur speciation in natural hydrothermal waters, Iceland. Geochim. Cosmochim. Acta 75, 2777–2791 (2011).
Gibard, C., Bhowmik, S., Karki, M., Kim, E.-K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).
Gibard, C. et al. Geochemical sources and availability of amidophosphates on the early Earth. Angew. Chem. Int. Ed. Engl. 58, 8151–8155 (2019).
Zuman, P. & Szafranski, W. Ultraviolet spectra of hydroxide, alkoxide, and hydrogen sulfide anions. Anal. Chem. 48, 2162–2163 (1976).
Pasek, M. A., Kee, T. P., Bryant, D. E., Pavlov, A. A. & Lunine, J. I. Production of potentially prebiotic condensed phosphates by phosphorus redox chemistry. Angew. Chem. Int. Ed. Engl. 47, 7918–7920 (2008).
Harigane, Y., Michibayashi, K. & Ohara, Y. Deformation and hydrothermal metamorphism of gabbroic rocks within the Godzilla Megamullion, Parece Vela Basin, Philippine Sea. Lithos 124, 185–199 (2011).
Gulick, A. Phosphorus as a factor in the origin of life. Am. Sci. 43, 479–489 (1955).
Cates, N. L., Ziegler, K., Schmitt, A. K. & Mojzsis, S. J. Reduced, reused and recycled: detrital zircons define a maximum age for the Eoarchean (ca. 3750–3780 Ma) Nuvvuagittuq supracrustal belt, Québec (Canada). Earth Planet. Sci. Lett. 362, 283–293 (2013).
Burcar, B. et al. A stark contrast to modern Earth: phosphate mineral transformation and nucleoside phosphorylation in an iron- and cyanide-rich early Earth scenario. Angew. Chem. Int. Ed. Engl. 58, 16981–16987 (2019).
Kurosawa, K. et al. Hydrogen cyanide production due to mid-sized impacts in a redox-neutral N2-rich atmosphere. Orig. Life Evol. Biosph. 43, 221–245 (2013).
Ferus, M. et al. High energy radical chemistry formation of HCN-rich atmospheres on early Earth. Sci. Rep. 7, 6275 (2017).
Parkos, D., Pikus, A., Alexeenko, A. & Melosh, H. J. HCN production via impact ejecta during reentry during the late heavy bombardment. J. Geophys. Res. Planets 123, 892–909 (2018).
Tera, F., Papanastassiou, D. A. & Wasserburg, G. J. Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974).
Brasser, R., Mojzsis, S. J., Werner, S. C., Matsumura, S. & Ida, S. Late veneer and late accretion to the terrestrial planets. Earth Planet. Sci. Lett. 455, 85–93 (2016).
Genda, H., Brasser, R. & Mojzsis, S. J. The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth Planet. Sci. Lett. 480, 25–32 (2017).
Mojzsis, S. J., Brasser, R., Kelly, N. M., Abramov, O. & Werner, S. C. Onset of giant planet migration before 4480 million years ago. Astrophys. J. 881, 44 (2019).
Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde 69, 101–125 (2009).
Kraus, R. G. et al. Impact vaporization of planetesimal cores in the late stages of planet formation. Nat. Geosci. 8, 269–272 (2015).
Smil, V. Phosphorus in the environment: natural flows and human interfaces. Annu. Rev. Energy Env. 25, 53–88 (2000).
Shoemaker, E. M. in Physics and Astronomy of the Moon (ed. Kopal, Z.) Ch. 8 (Academic Press, 1962).
Bassett, J. Inorganic Chemistry: A Concise Text (Pergamon Press, 1966).
Liu, D. et al. Disproportionation of hypophosphite and phosphite. Dalton Trans. 46, 6366–6378 (2017).
Pasek, M. & Lauretta, D. Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth. Orig. Life Evol. Biosph. 38, 5–21 (2008).
Pasek, M. A. Schreibersite on the early Earth: scenarios for prebiotic phosphorylation. Geosci. Front. 8, 329–335 (2017).
Brasser, R., Werner, S. C. & Mojzsis, S. J. Impact bombardment chronology of the terrestrial planets from 4.5 Ga to 3.5 Ga. Icarus 338, 113514 (2020).
Mojzsis, S. J. in Earth’s Oldest Rocks (eds van Kranendonk, M. J., Smithies, R. H. & Bennett, V. C.) 923–970 (Elsevier, 2007).
Steudel, R. in Elemental Sulfur and Sulfur-Rich Compounds Vol. 2 (ed. Steudel, R.) 99–126 (Springer, 2003).
Herschy, B. et al. Archean phosphorus liberation induced by iron redox geochemistry. Nat. Commun. 9, 1346 (2018).
Acknowledgements
The authors thank P. B. Rimmer for helpful discussions about atmospheric shielding from UV light and photochemical reactions and R. Brasser and O. Abramov for informative discussions about dynamical models and Earth’s formation. D.J.R. thanks T. Rutherford for assistance with NMR spectroscopy and C. Johnson for assistance with UV-Vis spectroscopy. This work was supported by the Medical Research Council (grant no. MC_UP_A024_1009 to J.D.S) and a grant from the Simons Foundation (grant no. 290362 to J.D.S.), and S.J.M. thanks the Collaborative for Research in Origins (CRiO) at the University of Colorado, which was supported by The John Templeton Foundation (principal investigator: S. Benner/FfAME): the opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. S.J.M. also acknowledges the NASA Solar System Workings Program, grant 80NSSC17K0732 (principle investigator: O. Abramov/PSI).
Author information
Authors and Affiliations
Contributions
D.J.R. and J.D.S. designed the chemical experiments, D.J.R. carried out the chemical experiments, and D.J.R. and J.D.S. analysed the data. S.J.M. calculated the quantities of reduced phosphorus delivered to Earth from dynamical models. D.J.R. wrote the manuscript with input from J.D.S. and S.J.M. All authors read and approved the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Primary Handling Editors: Tamara Goldin; Stefan Lachowycz.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Discussions 1–3, Note 1 and Figs. 1–18.
Supplementary Table 1
Table of mass productions for late accretion to Earth.
Rights and permissions
About this article
Cite this article
Ritson, D.J., Mojzsis, S.J. & Sutherland, J.D. Supply of phosphate to early Earth by photogeochemistry after meteoritic weathering. Nat. Geosci. 13, 344–348 (2020). https://doi.org/10.1038/s41561-020-0556-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-020-0556-7
This article is cited by
-
Cosmic dust may have driven the geochemical origins of life on Earth
Nature Astronomy (2024)
-
Moderate and high-temperature metamorphic conditions produced diverse phosphorous species for the origin of life
Communications Earth & Environment (2024)
-
Cosmic dust fertilization of glacial prebiotic chemistry on early Earth
Nature Astronomy (2024)
-
Biogeochemical explanations for the world’s most phosphate-rich lake, an origin-of-life analog
Communications Earth & Environment (2024)
-
Phosphorus availability on the early Earth and the impacts of life
Nature Geoscience (2023)