Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phosphorus-limited conditions in the early Neoproterozoic ocean maintained low levels of atmospheric oxygen


The redox chemistry of anoxic continental margin settings evolved from widespread sulfide-containing (euxinic) conditions to a global ferruginous (iron-containing) state in the early Neoproterozoic era (from ~1 to 0.8 billion years ago). Ocean redox chemistry exerts a strong control on the biogeochemical cycling of phosphorus, a limiting nutrient, and hence on primary production, but the response of the phosphorus cycle to this major ocean redox transition has not been investigated. Here, we use a geochemical speciation technique to investigate the phase partitioning of phosphorus in an open marine, early Neoproterozoic succession from the Huainan Basin, North China. We find that effective removal of bioavailable phosphorus in association with iron minerals in a globally ferruginous ocean resulted in oligotrophic (nutrient limited) conditions, and hence a probable global decrease in primary production, organic carbon burial and, subsequently, oxygen production. Nevertheless, phosphorus availability and organic carbon burial were sufficient to maintain an oxidizing atmosphere. These data imply substantial nutrient-driven variability in atmospheric oxygen levels through the Proterozoic, rather than the stable levels commonly invoked.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Sample locations within the North China craton.
Fig. 2: Geochemical variations against the main stratigraphy of the Huainan Basin.
Fig. 3: Corg versus P contents in Proterozoic sediments.
Fig. 4: P contents in black shales through time.
Fig. 5: Biogeochemical evolution of the ocean at the Mesoproterozoic/Neoproterozoic boundary (ca. 1 Ga).

Data availability

All data generated and analysed for the current study are attached, and are available from data repository


  1. 1.

    Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).

    Google Scholar 

  2. 2.

    Planavsky, N. J. et al. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).

    Google Scholar 

  3. 3.

    Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).

    Google Scholar 

  4. 4.

    Zhang, S. et al. Sufficient oxygen for animal respiration 1,400 million years ago. Proc. Natl Acad. Sci. USA 113, 1731–1736 (2016).

    Google Scholar 

  5. 5.

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Google Scholar 

  6. 6.

    Reinhard, C. T., Planavsky, N. J., Olson, S. L., Lyons, T. W. & Erwin, D. H. Earth’s oxygen cycle and the evolution of animal life. Proc. Natl Acad. Sci. USA 113, 8933–8938 (2016).

    Google Scholar 

  7. 7.

    Zhang, K. et al. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nat. Geosci. 11, 345–350 (2018).

    Google Scholar 

  8. 8.

    Guilbaud, R., Poulton, S. W., Butterfield, N. J., Zhu, M. & Shields-Zhou, G. A. A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nat. Geosci. 8, 466–470 (2015).

    Google Scholar 

  9. 9.

    Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).

    Google Scholar 

  10. 10.

    Bjerrum, C. J. & Canfield, D. E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159 (2002).

    Google Scholar 

  11. 11.

    Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).

    Google Scholar 

  12. 12.

    Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017).

    Google Scholar 

  13. 13.

    Jones, C., Nomosatryo, S., Crowe, S. A., Bjerrum, C. J. & Canfield, D. E. Iron oxides, divalent cations, silica, and the early Earth phosphorus crisis. Geology 43, 135–138 (2015).

    Google Scholar 

  14. 14.

    Konhauser, K. O., Lalonde, S. V., Amskold, L. & Holland, H. D. Was there really an Archean phosphate crisis? Science 315, 1234–1234 (2007).

    Google Scholar 

  15. 15.

    Poulton, S. W. Biogeochemistry: early phosphorus redigested. Nat. Geosci. 10, 75–76 (2017).

    Google Scholar 

  16. 16.

    Rivas-Lamelo, S. et al. Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin. Geochem. Perspect. Lett. 5, 35–41 (2017).

    Google Scholar 

  17. 17.

    Konhauser, K. O. et al. Decoupling photochemical Fe (II) oxidation from shallow-water BIF deposition. EarthPlanet. Sci. Lett. 258, 87–100 (2007).

    Google Scholar 

  18. 18.

    Zegeye, A. et al. Green rust formation controls nutrient availability in a ferruginous water column. Geology 40, 599–602 (2012).

    Google Scholar 

  19. 19.

    Cosmidis, J. et al. Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France). Geochim. Cosmochim. Acta 126, 78–96 (2014).

    Google Scholar 

  20. 20.

    Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).

    Google Scholar 

  21. 21.

    Ingall, E. & Jahnke, R. Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Mar. Geol. 139, 219–229 (1997).

    Google Scholar 

  22. 22.

    Krom, M., Kress, N., Brenner, S. & Gordon, L. Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. Limnol. Oceanogr. 36, 424–432 (1991).

    Google Scholar 

  23. 23.

    Slomp, C. P., Thomson, J. & de Lange, G. J. Controls on phosphorus regeneration and burial during formation of eastern Mediterranean sapropels. Mar. Geol. 203, 141–159 (2004).

    Google Scholar 

  24. 24.

    Dellwig, O. et al. A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins. Geochim. Cosmochim. Acta 74, 7100–7115 (2010).

    Google Scholar 

  25. 25.

    Thompson, J. et al. Development of a modified SEDEX phosphorus speciation method for ancient rocks and modern iron-rich sediments. Chem. Geol. 524, 383–393 (2019).

    Google Scholar 

  26. 26.

    Egger, M., Jilbert, T., Behrends, T., Rivard, C. & Slomp, C. P. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments. Geochim. Cosmochim. Acta 169, 217–235 (2015).

    Google Scholar 

  27. 27.

    Slomp, C. P. et al. Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane. PLoS ONE 8, e62386 (2013).

    Google Scholar 

  28. 28.

    Xiong, Y. et al. Phosphorus cycling in Lake Cadagno, Switzerland: a low sulfate euxinic ocean analogue. Geochim. Cosmochim. Acta 251, 116–135 (2019).

    Google Scholar 

  29. 29.

    Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677–692 (1994).

    Google Scholar 

  30. 30.

    Canfield, D. E., Raiswell, R. & Bottrell, S. H. The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 292, 659–683 (1992).

    Google Scholar 

  31. 31.

    Dos Santos Afonso, M. & Stumm, W. Reductive dissolution of iron(III) (hydr)oxides by hydrogen sulfide. Langmuir 8, 1671–1675 (1992).

    Google Scholar 

  32. 32.

    Ruttenberg, K. C. & Berner, R. A. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim. Cosmochim. Acta 57, 991–1007 (1993).

    Google Scholar 

  33. 33.

    Planavsky, N. J. et al. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477, 448–451 (2011).

    Google Scholar 

  34. 34.

    Poulton, S. W., Fralick, P. W. & Canfield, D. E. Spatial variability in oceanic redox structure 1.8 billion years ago. Nat. Geosci. 3, 486–490 (2010).

    Google Scholar 

  35. 35.

    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Google Scholar 

  36. 36.

    Tang, Q. et al. Organic-walled microfossils from the early Neoproterozoic Liulaobei Formation in the Huainan region of North China and their biostratigraphic significance. Precambrian Res. 236, 157–181 (2013).

    Google Scholar 

  37. 37.

    März, C. et al. Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochim. Cosmochim. Acta 72, 3703–3717 (2008).

    Google Scholar 

  38. 38.

    Turekian, K. K. & Wedepohl, K. H. Distribution of the elements in some major units of the Earth’s crust. Geol. Soc. Am. Bull. 72, 175–192 (1961).

    Google Scholar 

  39. 39.

    Teng, Y.-C., Primeau, F. W., Moore, J. K., Lomas, M. W. & Martiny, A. C. Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter. Nat. Geosci. 7, 895–898 (2014).

    Google Scholar 

  40. 40.

    Ingall, E. D., Bustin, R. & Van Cappellen, P. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim. Cosmochim. Acta 57, 303–316 (1993).

    Google Scholar 

  41. 41.

    Schrag, D. P., Higgins, J. A., Macdonald, F. A. & Johnston, D. T. Authigenic carbonate and the history of the global carbon cycle. Science 339, 540–543 (2013).

    Google Scholar 

  42. 42.

    Creveling, J. R. et al. Phosphorus sources for phosphatic Cambrian carbonates. Geol. Soc. Am. Bull. 126, 145–163 (2014).

    Google Scholar 

  43. 43.

    Kipp, M. A. & Stüeken, E. E. Biomass recycling and Earth’s early phosphorus cycle. Sci. Adv. 3, eaao4795 (2017).

    Google Scholar 

  44. 44.

    Sperling, E. A. & Stockey, R. G. The temporal and environmental context of early animal evolution: considering all the ingredients of an “Explosion”. Integr. Comp. Biol. 58, 605–622 (2018).

    Google Scholar 

  45. 45.

    Daines, S. J., Mills, B. J. & Lenton, T. M. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat. Commun. 8, 14379 (2017).

    Google Scholar 

  46. 46.

    Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).

    Google Scholar 

  47. 47.

    Mackenzie, F., Lerman, A. & Andersson, A. Past and present of sediment and carbon biogeochemical cycling models. Biogeosci. Discuss. 1, 27–85 (2004).

    Google Scholar 

  48. 48.

    Compton, J. et al. in Marine Authigenesis: From Global to Microbial (ed. Glenn, C. R.) 21–33 (Society for Sedimentary Geology, 2000).

  49. 49.

    Stolper, D. A. & Keller, C. B. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553, 323–327 (2018).

    Google Scholar 

  50. 50.

    Lenton, T. M. & Daines, S. J. Biogeochemical transformations in the history of the ocean. Annu. Rev. Mar. Sci. 9, 31–58 (2017).

    Google Scholar 

  51. 51.

    Ruttenberg, K. C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 37, 1460–1482 (1992).

    Google Scholar 

Download references


This work was supported by NERC (NE/I005978/1) and NSFC (41661134048) through the Co-evolution of Life and the Planet programme, through the Biosphere Evolution, Transitions and Resilience (NE/P013651) programme, and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18000000). S.W.P. and T.M.L. were supported by Royal Society Wolfson Research Merit Awards and S.W.P. by a Leverhulme Trust Fellowship.

Author information




R.G. and S.W.P. devised the research. R.G., S.W.P., G.A.S., Y.Z. and M.Z. collected samples. J.T. and K.F.H. analysed the Mesoproterozoic samples. R.G. analysed the Neoproterozoic samples and interpreted the data. R.G. wrote the manuscript with significant contributions from all co-authors.

Corresponding author

Correspondence to Romain Guilbaud.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Primary Handling Editors: James Super; Xujia Jiang.

Supplementary information

Supplementary Information

Supplementary discussion, Tables 2 and 3, and Figs. 1–5.

Supplementary Table 1

Geochemical analyses

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guilbaud, R., Poulton, S.W., Thompson, J. et al. Phosphorus-limited conditions in the early Neoproterozoic ocean maintained low levels of atmospheric oxygen. Nat. Geosci. 13, 296–301 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing